The C Cheat Sheset

An Introduction to Programming in C

Revision 1.0
September 2000

Andrew Sterian
Padnos School of Engineering
Grand Valley State University

The C Cheat Sheet Revision 1.0 September 5, 2000

The C Cheat Sheet Revision 1.0 September 5, 2000

TABLE OF CONTENTS

PREFACEt bb e s bt s be e sb e e e sbe e e nnree e 1
IO I oo [i o o S 2
0 T = U o T T e o 2

2 1o o W o L= T =SSR 3

VAT T =S oo T 3

1.4 THE PrEPIOCESSOLveveeeeeneeseeeeseesessessessessessessessessessensesessesseesessesssssessesseseessessensensesessessessessensenes 3

141 The#Hdef i NE DIFECHIVE.coci i e 4

L4 2 COMIMENES.....ctiiueeteeteete ettt et steeaeesaeeeesbeebesbe e besbeeaseeaeaeeeaeeseesaeeseesmeesbeesnenbesnsenneenns 5

143 The#i NCl U@ DIFECLVE......cciiiiiece et 5

1.44The#i f def /#el se/#endi f DireCliVES......ccccooriririiinese e 6

L1455 MOPE DITECLIVES.....ceiuieiieeeeteite sttt sttt st sttt se ettt eae b e bt 7

1.4.6 PredefiNed IMBCIOS.......cccooeieeeienterie sttt sttt sae e sbe e 7

A Ol =TS Lol BT |- I8/ oL R 8
2 S o 1= o B T 01 = T 1Y o= 8
2.2UNSIGNEA INEEOEI TYPES.eiuieuieuerierieetestesiestestesiesee st eseeesseesesbesaesbesbesbeseessansenseseeneenessesnessessesaessens 9

2.3 INEEGEN OVEITIOW ...ttt b b e bbb se e et e e sbesbesae e 9

A L= I T = U 1Y 0= 10

2.5 BCC32 IMPIEMENTALTION ...ttt ettt sb e st se et se e e 10

A RN I 0 =RV A oY o B I/ USSR 10
G300 a1 8 o N o S 11
31Theif/ el se/endi f StAEMENES ... e 11

3.2 COMPOUNT SEALEIMENESc.eeeieeeeeeeeieet ettt sttt re e e sbesae bt sbesbeseese e b e bese e e ene e e e neene 12

B INESE | T SEALEMENTS. ..ottt ettt sttt et et e b seene e 13

34 ThesW t Ch/ CASE SEAEMENT........ooiiie e e 14

B The T OF SEALEIMENT ... bbbt e e et ae e ae b e b e 15

BB TeWNi | € SEALEMENTcveiieiiieeiereeree ettt et st st s b e e b seene e 16
3.7Thedo/ Whi | @ SEALEMENT......cooiiie e e et e 17

3.8 The br @ak SEAEMENTc.ooeieeeee e bbb et e 17

3.9 ThECONt T NUE SEAEMENT......iiiitiietereete ettt st st s b e s beseebe e 18

3.10 THE GOt O SEALEIMENL ..ottt a e bbb et b e se e e e e e e 19

311 THET €t UI N SEBIEMIENL. ...ttt sa e bbb b se b et e e e e e 20

4.0 EXPressionS and OPEr @lOrS.......cuieeiuerieereeieeseeseeeeseesseseessesssssseessessssseessesssssseenses 21
4.1 BaSiC ArithMEtic OPEIAlOrScoveitereereeeeeeeee ettt sttt sae st b see st e be e e e e e e e ene 21

4.2 Promotion @NG CASHINGveevereereerieeeieeieeeeeee e sttt see e e es e sesse s e saesbesbesaessesbeseeseenseneeneens 21

4.3 MOre ArithmMELiC OPEralOrS......ueiveieeeeeeeereee e s e seste s e seeseeaesee e esesse s e saestesbesressenseseeneeneeneeneens 22

4.4 ASSIGNMENE OPEFBIOIS ..c.vevieiitietirteseereeieseereeee e st saesbesbeseeseebesseseeneesesseaaesbesbesaesbesbeseessansenseneans 23

A.5 BitWiSE OPEIALOISueiuerueitertertietesteseeseeee e e e ettt sae s st s besbeseeseeee e e e eaesae e st aaeebesbeseesbebeseeneanseneeneans 23

4.6 REIBLIONGl OPErALOrS.....eiuiivieieieististeseeseeeeeeeeeetesesrestesteseeseesseseeseesessessessestessessessensessensensnsenneens 24

Ny T o= @0 1< 1= (o] £SO 24

4.8 The CoNditioNal OPEIALOTcoiitereereeieeereeeeer ettt et se e e et sae b e sbe bt sb e besee e e s e e neens 25

The C Cheat Sheet Revision 1.0 September 5, 2000

4.9 The COMMA OPENBLONecveieeieistesiesieseeeeseeseeeesesesse e steseessessessesseseesessessessessessessessessensensensenenns 26

4.10 Operator Precedence and ASSOCIBLIONccccreriririereriereeieee et se e 27

5.0 Program SITUCTUN €......oiiiie ettt e e e 27
I T o7 - T ol o0 27

5.2 CalliNg FUNCLIONS. ..ottt ettt sb e bbb st e b e b e e e e e e et 30
B.3LOCA VATADIES. ...ttt 30

5.4 GlOD@l VATBDIES ...ttt sttt ne e 31

6.0 AAVANCED DAl@ TYPES...cueeeieieeieeieseesieetesee e e ee e s e eeesse e seeseesseesseeseesseenseeneesseenses 31
L0t 1 = 1Y U 31

B.2 SITUCKUIES ...ttt b bt s r b e se e e e e et e st eb e e bt s bt e Rt b seene e e e e e e s 32

LSRR o 1411 £ T USSR 33

LTS 1 36

L S {1 o 1 T 1 = £ 37

(S S 110 @)1= 1] 39

6.5 ENUMEIAEEH TYPES ...veeeteieeieeeeee ettt sttt see st se e e e e e e aeeaesae s et sbesbeseesa et e bese e e e e eneeneens 40

B.6 BItfIEIUS ...veeeteete ettt sttt b e be et e nnas 40

B.7 UNIONS. ...ttt sttt sttt st st e b stk s e bt s b st s e e bt b e st e b eneeb et et et e b et et e st ebese et e neebeneas 411

7.0 Advanced Programming CONCEPLS........cuveereriieieenienie et see s seessee e e 41
A8 S =0T = o 1 OSSPSR 41

A @ o7 o o To 1 = USSR 42

7. 1.2 Writing t0 Fil@ POINEEIS......couiitiiieie it e e 42

7.1.3 Reading from FIl@ POINLErScooiiiiieieee e e 43

7.14Thest di n/st dout /St derr SrEaMS........cooiiriereeeeee e 44

7.2 Dynamic Memory AlIOCAHIONccccoveieeie ettt ne e ne e 45

7.3 MEMOrY MaNiPUIBLIONceieieieeeeeeieeiee ettt et ae e sbe b b et et se e e e e e e ene 47

7.4 DECIAITNG NEBW TYPES ...cueeeeeeeeieeeee ettt sttt et e e e e e e e aeebesae s et sbesbesbeseenbebesee e eneeneeneens 48

7.5 POINTErS 0 FUNCLIONS ..ottt ettt st st st e b neene e 49

7.6 ComMMAN-LiNE ParamELErScooiiiiuiriirieiiiniese et sbe bbb bbb e ne e 50
B.0OMUILI-FIlE Programs.......ccciiieieeie e eteseese e e et ee et e e enaeenaenneenes 51
8.1 BASIC CONCEPLS.....eueeveeetereeterieie st sttt sttt sttt ettt ettt et st e e e b e st et e st et e se et e seebeseebeneebeneeneneas 51

8.2 INClude FIES aS INEITACEScooeiiieiee et e b e 54

8.3 Object FIleS @and LiNKINGccccoeriiiriniere et sae e bbb e e 55

8.4 The Details of the COmMPilation PrOCESS.........cccveirrireireseres ettt 56

9.0 The Standard C Library ..o s 57
9.1 ASSEItiON ChECKING. .. c.veteeeeeiereee ettt ettt ae et sb e b et s b et e e e e e e e e et e st enesseeaesbe b es 57

9.2 CharaCter ClasSifiCaliON........cureirreriee ettt et st st st e b seene e 58

SR (o g = oo i o To T USSR 58

9.4 BUFfer MaNIPUIBLION ...ttt s b et bbb e bt e e 58

LS T N [o o o= 0] = 58

9.6 EVENE SIGNEAITING ..ttt ettt b e bbb b e b b e e e e e 58

9.7 Variable-Length Argument ListS.......cooiiiiiiiie it e s 58

9.8 MiSCAIlANEOUS FUNCLIONSouiieiirieiirieierie ettt st st st st s beseene e 59

LS IS 1ol o = To 1T oo USSR 59

O.10 THME FUNCHIONS.....ceeeeeeieee ettt ettt ettt eb e s b e bt sb e s b e b se et e b e se e e e e e e e e ene 59

1S I o= 1T o 1Y 1 S 59

The C Cheat Sheet Revision 1.0 September 5, 2000

S S = 100 = 1 I L@ PO SOPSOTSTURSPRSR 59
10.0 Tips, Tricks, aNd CAVEALS........ccceveerieeiereerieeiesteesee e se et eee e e nne e sreeeeenee e 60
10.2 INFINITE LOOPS. .. e eveevereertirteiesieseeseeeeseeeesessessessessesseseessessessessesessesseesessessessessessesssssensensesseensennes 60
LA L o= T Tor 1= o [o] o L= 60
O I N LTS = =0 1= o | SR 61
10.4 EXLran@oUS SEMICOIONS.......cciueirieiriereste st st teseste st st ses s see e sae e sae s st s sae st sbe st sbe e sbe e sbenessens 62
10.5St T CNP ISBACKWEAITSc.veeeececeeeec ettt st e e e e ennens 62
10.6 Unterminated COMIMENTS........cciiieiiieiere e eee st st ae s e e s reete e et esreesesreetesaeesresaeesresneas 62
10.7 Equality and ASSIGNMENT.......eiuiiererierieeereeeeeeese e sresre s see e sresees e seseeeeseeseeseesessessesesssesseses 62
10.8 ASSErtiON ChECKING. .. e veveeeieeeieieeese et ste e st s st s ee e e e e ese e s e ssessesaesaeste e seessenseneeneeneenennes 63
L0.9 EFTOr CRECKING.....cviteieeseeieee ettt sttt st et e et s bt eb e b sbe b e beseess et et e e e e eneenas 63
10.10 Programming SEYI€.....eiueeiereeecee ettt sa et s sn e e e e eneenn 65
11.0 Differences between Java and C..........cccceiiieiieiieeiie e 68

The C Cheat Sheet Revision 1.0 September 5, 2000

PREFACE

This document is an introduction to the C programming language. Unlike a thorough reference
manual this document is limited in scope. The main goal is to provide aroadmap that can answer
basic questions about the language, such as what data types are supported or what af or loop
looks like. The beginning C programmer can use this document to get started with the language
and write small-to-medium-size programs involving simple 1/0, file manipulation, and arithmetic
computations.

This document relies heavily on examplesto teach C. Examples alow the reader to quickly grasp
the concept being presented but do not allow for athorough explanation. Thisis consistent with
the philosophy that this document is an entry point to the language, not a reference text. When
guestions arise that cannot be answered here, the reader is directed to three very useful resources:

* The on-line documentation that comes with the reader’s C compiler. This reference
documentation thoroughly describes both the language structure and the library com-
ponents.

* Theclassic textbook “ The C Programming Language”, 2" edition, by Kernighan &
Ritchie. Written by the architects of the C language, this text was published in 1988
but has endured as both areference and as a tutorial.

« Themore recent text “C: A Reference Manual”, 4™ edition, by Harbison & Steele.
Thistext, asitsnameimplies, is mostly areference, not atutorial, but it includes some
of the latest changes in the language standard.

Finally, note that C, like spoken languages, does evolve with time. Even though it is the most
mature of the three mgjor system development languages currently in favor (C, C++, and Java)
international standards committees continueto try to improve its character. For example, issues of
internationalization have led to improved support for multi-byte character strings, a concept not
formally part of the C language. A new proposal for the C standard has been submitted by the 1SO
as of December 1999. Y our compiler’ s documentation is the last word on compliance with the
most recent standards.

It is assumed that the reader is familiar with programming conceptsin general and may also be
familiar with the Java programming language. The core Java language design was heavily influ-
enced by the C language and the “look and feel” of a C program at the syntactic level will be quite
familiar to Java programmers. Differences in the two languages are highlighted throughout this
document (also see the summary in Section 11.0).

The C Cheat Sheet Revision 1.0 September 5, 2000

1.0 Introduction

A C program may occupy asfew as5 linesin asinglefile. Here is the venerable “Hello world!”

programin thefile“hel | 0. ¢"*:

#i ncl ude <stdio. h>
void mai n(void) {

printf(“Hello world!'\n");
}

Thistext file (known as the source code) is compiled to an executable file using a C compiler. For
example, using the Borland “BCC32" program:

bcc32 -ehello.exe hello.c
Running the“hel | 0. exe” program prints “Hello world!” on the screen (in a console window).

Java programmers may recognize the mai n() method but note that it is not embedded within a
J class. C does not have classes. All methods (simply known as functions) are written at file scope.

1.1 Themai n() Function

Themai n() function isthe starting point of the program. All C programs must have amai n()
function. While this function can be written as in the example above (but see footnote 1), it is
most often written with the following prototype (or signature):

int main(int argc, char *argv[])
While we may not quite understand all of the above, there are afew points to note:

* Thereturntype of themai n() functionisan integer (typei nt). The value returned
by the mai n() function isknown asthe return value of the program. Traditionally, a
return value of 0 indicates that the program executed successfully while a non-zero
value indicates an error condition. In many cases, we are not concerned with this
return value and it is simply ignored.

* The parameters of themai n() function (ar gc and ar gv) allow the C program to
process command-line parameters. We will discuss this further in Section 7.6 after we
have introduced character strings.

1. One C practitioner has declared that the author of any document which writes‘voi d mai n(voi d)’
“...doesn't know or can't be bothered with learning, using, and writing about the actual languages defined
by their respective International Standards. It isvery likely that the author will make other subtle and not-
so-subtle errorsin the book.” Indeed, the C standard says that the mai n function must always return an
integer. But thisis not adocument describing a standard; it’s ssimply here to kick-start the learning pro-
cess. Nonetheless, be on the lookout for subtle and not-so-subtle errors!

J]

J]

The C Cheat Sheet Revision 1.0 September 5, 2000

Themai n() method in Java has the prototype‘ mai n(String[] args)’ which provides
the program with an array of strings containing the command-line parameters. In C, an array does
not know its own length so an extra parameter (ar gc) is present to indicate the number of entries
inthear gv array.

1.2 IncludeFiles
Thefirst line of our example program:

#i ncl ude <stdi 0. h>

inserts the contents of afile (in thiscase, afile named st di 0. h) into the current file, just asif
you had cut and pasted the contents of that file into your source code. The purpose of these files
(known asinclude files or header files) isto tell the compiler about the existence of externa func-
tions which the source code will make use of.

In this case, thefile st di 0. h definesthe function pri nt f () which we use to print text to the
screen. Without including thisfile, the compiler would generate an error when it encountered the
printf () functionin the source code since thisfunction is not a part of the core language.

Thest di 0. h file defines many other functions, all related to the “ Standard I/O” component of
the standard C library. We will discuss standard 1/0 in more detail in Section 7.1 and the concept
of librariesin Section 8.3. While the standard C library is not part of the core C language, itisdis-
tributed with the C compiler (along with many other libraries) and is actually a part of the C lan-
guage specification.

Java users may see the similarity between the #i ncl ude statement and Java’'si nport state-
ment. Both serve the same purpose, to “pull in” external components for use by the given pro-
gram.

1.3 Whitespace

The C language generally ignores whitespace (i.e., spaces, blank lines, tabs, etc.). The“Hello
world!” program could have been written more succinctly (and illegibly) as:

#i ncl ude <stdio. h>
void main(void){printf(“Hello world!'\n");}

The only cases where whitespace is significant are in preprocessor statements (such as the
#1 ncl ude statement; see Section 1.4 below for more details on the preprocessor) and within
character strings, like“Hel | o wor | d!'\ n”.

1.4 The Preprocessor

When alinein a C program begins with the octothorpe character ‘#, it indicates that thislineisa
preprocessor directive. The preprocessor is actually a program that runs before the C compiler
itself. It serves to perform text substitutions on the source code prior to the actual compilation.

The C Cheat Sheet Revision 1.0 September 5, 2000

Java does not have a preprocessing step. It can be argued (quite justifiably) that Java’ s language
|features obviate the need for any text substitutions. With C however, the preprocessor can often
provide useful program development support.

1.4.1 The#def i ne Directive

The simplest form of preprocessor directive isthe #def i ne statement. As an example, consider
the following program:

#define Pl 3.1415926535

void mai n(void) {
printf(“The constant pi is %\n", Pl);
}

Asthefirst step in the compilation process, the preprocessor looks for all occurrences of the token
“Pl " and replacesit with thetoken “3. 1415926535”. What the actual C compiler sees, then, is
the following:

void mai n(void) {
printf(“The constant pi is %g\n", 3.1415926535);
}

Note that the preprocessor has simply substituted the text “3. 1415926535” for the text “PI ”.
The#def i ne statement initiated this substitution. Also note that the actual line with the

#def i ne directive has been removed (and interpreted) by the preprocessor. The C compiler does
not see these directive lines.

The#def i ne directive can also perform rudimentary macro substitutions. Again, an example:

#def i ne HALFOF(x) x/2
void mai n(void) {

printf(“Half of 10 is %\ n”, HALFOF(10));
}

The actual C compiler sees the following source code after preprocessing:

void mai n(void) {
printf(“Half of 10 is %\ n”, 10/2);
}

A very common use of macro substitutionsisin the definition of “pseudo-functions’. For exam-
ple, here are some ways to compute the maximum, minimum, absolute value, and signum func-
tions (see Section 4.8 for a description of the ternary operator ‘?: *):

#define max(x,y) ((x) > (y) ? (x) : (y))

#define mn(x,y) ((x) < (y) ? (x) : (y))

#define abs(x) ((x) >= 0 ? (x) : -(x))

#define sgn(x) ((x) >0?1: ((x) <0?-1: 0))

The C Cheat Sheet Revision 1.0 September 5, 2000

Macro definitions of this form can become quite unwieldy, which is most likely why the prepro-
cessor has not survived to more recent languages like Javawhere better (and safer) solutions exist.

The heavy use of parentheses in the above macrosis to prevent unintended side effects. Thisis
best illustrated with an example:

#def i ne SQUARED(X) Xx*Xx

void mai n(void) {

int i =5;

printf(“i+2 squared is %d\n”, SQUARED(i +2));
}

The intention hereisto print the square of i +2 (which should be 5+2 squared, or 49). But the
compiler seesthe following:

void mai n(void) {

int i =5;

printf(“i+2 squared is %d\n", i+2*i+2);
}

which will print 5+2*5+2 or 17, following proper order of operations. Adding those nuisance
parentheses fixes things, however:

#def i ne SQUARED(x) (x)*(x)
now expands SQUARED(i +2) as(i +2) * (i +2) and the program works correctly.

1.4.2 Comments

The preprocessor removes all text within the comment delimiters/ * and */ , just asin Java. For
example:

/*
This comment is renoved by the preprocessor
and is not seen by the actual conpiler.

*/

void mai n(void) {
printf(“H!\n”); [/* Another comrent! */

}

While not part of the original C language definition, single-line comments introduced by / / are
supported by most modern C compilers, as with Java.

1.4.3 The#i ncl ude Directive

We have already seen that the purpose of the#i ncl ude directiveisto insert another fileinto the
fileto be compiled. Again, itisasif you wereto copy and paste the contents of the include file
into the source code.

Y ou may actually encounter two forms of the #include directive. The first has already been
encountered:

The C Cheat Sheet Revision 1.0 September 5, 2000

#i ncl ude <sonefile. h>
The second form uses quotation marks instead of angle brackets:

#i ncl ude “sonmefile.h”

The difference in these two forms lies in the include file search path. Thisisalist of directories
that the preprocessor searchesin order to find the include file. This search path should be config-
ured when you install the compiler so you shouldn’'t generally have to worry about it.

With the second form of the #i ncl ude directive (using quotation marks), the preprocessor first
looks in the same directory as the sourcefile. If the include file is not found there, then the search
path is considered.

Practically, the angle brackets form (e.g., <st di 0. h>) isused to include system files that are
part of the C compiler system, while the quotation marks form (e.g., “ myst uf f . h”) isused to
include files that you write yourself and are part of your project.

144 The#i f def /#el selttendi f Directives

There are several directives that can be used to effect conditional compilation. Most often, condi-
tional compilation is used either as a debugging tool or to compile different code for different
hardware architectures. Here is an example that shows how to add debugging statements that can
easily be turned on or off.

#i ncl ude <stdio. h>
#def i ne DEBUG 1

void mai n(void) {
#i f def DEBUG

printf(“Debugging is enabled.\n");
#el se

printf(“Debugging is disabled.\n");
#endi f
}

The#i f def directivetellsthe preprocessor to pass the subsequent lines to the compiler only if
the item following #i f def has been defined using a#def i ne directive.

In this example, the token DEBUG has been defined to be 1, so the #i f def statement succeeds.
What the C compiler sees, then, is the following:

void mai n(void) {
printf(“Debugging is enabled.\n");
}

Everything following the #el se directiveis not passed to the compiler (up to the#endi f direc-
tive).

The C Cheat Sheet Revision 1.0 September 5, 2000

It iseasy now to switch between debugging mode and non-debugging mode. Simply comment out
the line that defines DEBUG:

/ | #defi ne DEBUG 1

Now, everything between #i f def and#el se isignored, and the C compiler only seesthe code
between #el se and #endi f .

1.45 MoreDirectives

There are other, less frequently used directives that you may want to investigate in a thorough C
reference manual:

« #undef un-defines adefinition created with #def i ne.

* #if isamoregenera form of #i f def that allows for expressions to be evaluated
rather than simply testing for a label being defined or undefined.

* #error generatesan error during compilation. It can be used to indicate that some
piece of code is being compiled when it should not be.

o #el i f canbeusedtoaugment #i f def /#el se/#endi f to have multiple clausesin
the test.

» #pragna isacompiler-specific directive that can be used to communicate with the
compiler to, for example, enable or disable certain optimizations or warning messages.

1.4.6 Predefined M acros

The preprocessor defines some constants automatically, as if they had been defined using

#def i ne directives. Theseinclude the constants __ FI LE__ which isthe name of the source
file, LI NE__ whichisthe number of the current line being compiled, _ DATE__ whichisthe
current date, and __ TI ME__ which isthe time that the source file was compiled. These constants
can aid in debugging or in adding some version information to your program (for example, date
and time of last compilation).

Here, for example, is the definition of a macro that can aid in debugging:

#define TRACE { printf(“Executing % line %d\n", _ FILE , _LINE); }

A simple way to trace through a program’s flow of execution is to sprinkle some TRACE state-
ments at key points:

void func(void) {
TRACE
dosonet hi ng();
TRACE

J]

The C Cheat Sheet Revision 1.0 September 5, 2000

Compiler vendors generally define their own predefined constants to augment the above. For
example, the BCC32 compiler always defines the constant _ BORLANDC __ to indicate the com-
piler vendor. Programs can use these additional constants to tailor the code based upon a specific
vendor’ s implementation or other conditions.

2.0 Basic Data Types

C supports the following awide variety of built-in data types. Surprisingly, more modern lan-
guages like Java have fewer datatypes. The reason is that the more data types there are, the more
rules there are regarding how they mix and thus the higher the possibility of confusion. Y ou will
find that of the 8 data types in C that can store integers, you will most likely only use two on a
regular basis.

2.1 Signed Integer Types
The four data types that can be used to represent integers are (from smallest to biggest):

* char

* short

e int

* long

Thechar type, asits name implies, generally stores 1-byte (8-bit) integers which can represent

ASCII characters. Even though character storage is the most common use for thistype, do not for-
get that essentially thisis an integer type.

Theshort,int,and| ong typessimilarly hold integers but of varying bit widths. Most com-
monly, theshor t type stores 16-bit integers (2 bytes). Thei nt type stores either 16-bit or 32-
bit integers, and the | ong type stores anywhere from 16-bit to 64-bit integers.

The fact that the actual bit widths that correspond to these typesis not specified in the original C
language standard has been a vexing problem for C programmers. Each compiler vendor isfreeto
choose whatever bit width they want. Recent enhancements to the C standard have addressed this
problem by definining known-width typessuch asi nt 16_t which indicates a 16-bit integer.

Usually, however, thei nt type correspondsto the “native” size of an integer of the underlying
computer. The early IBM PC machines (80x86 architectures) were 16-bit machines hence the
compilersdefined thei nt type to be 16-bit integers. With the advent of 32-bit computing (for
example, the Pentium architectures) modern compilers for the PC architecture define the i nt
type to be 32-bit integers. In both 16-bit and 32-bit architectures, however, compilers generally
defined | ong to be 32-hit integers and shor t to be 16-bit integers.

Thistype of confusion has been fixed in languages like Javawhere the data typeis strictly defined
to represent a certain number of bits. In C, you must read the documentation of your vendor’'s C
compiler to determine how many bits are represented by each type (see Section 2.5 for the details
of the BCC32 compiler).

The C Cheat Sheet Revision 1.0 September 5, 2000

2.2 Unsigned Integer Types

All of the four types described above may have the keyword unsi gned prepended to form inte-
ger types of the same bit width but not allowing negative numbers:

unsi gned char
unsi gned short
unsi gned i nt

unsi gned | ong

The difference between the signed and unsigned integer typesis simply whether or not we are
applying the two’'s complement convention. With the signed types, the bitsin an integer are inter-
preted as atwo’s complement number (i.e., the uppermost bit is the sign bit, etc.) With the
unsigned types, the bitsin an integer simply represent magnitude and there is no sign bit.

J | Note that Java has no unsigned types.

Unsigned types can store larger numbers (in magnitude) but, clearly, cannot represent negative
numbers. For example, counting how many times akey is pressed is naturally a good fit for an
unsigned data type as it makes no sense for this to be a negative quantity.

Practically, we recommend you avoid unsigned numbers unless the expanded range is truly
required. Mixing signed and unsigned numbers (unavoidable when dealing with the standard C
library) leads to several potential sources of errors, or at the very least lots of warning messages.

2.3 Integer Overflow

It isnot an error to exceed the number of bitsin an integer type as aresult of some operation. The
variable will simply “roll over” or wrap around to the other end of its range. For example:

#i ncl ude <stdio. h>

void mai n(void) {
unsi gned val = 65530; /1 maxi mum unsi gned i s 65535
printf(“val +10 is %\ n”, val +10);

}

Thiscode will print the value 4, since 65530+10=65540 which istoo big to fit into 16 bits. All bits
beyond 16 are discarded and what is | €ft is the number 4 (65540-2™°) in the lowest 16 bits.

The same principle holds for signed integer types:

#i ncl ude <stdio. h>

void mai n(void) {
int val = 32760; // nmaximum signed is 32767
printf(“val +10 is %\ n”, val +10);

The C Cheat Sheet Revision 1.0 September 5, 2000

This code will print -32766. Note that 32760+10=32770. If you subtract 2'® from this quantity
you obtain the wrapped-around result, -32766.

wrong:

j Java programmers familiar with the for loop may find it surprising that the following codeis

#i ncl ude <stdio. h>

void mai n(void) {
unsi gned i ;

for (i=10; i >=0; i--) {
printf(“i is %\n", i);
}

}

While we expect this code to print the numbers descending from 10 through O, in fact this code
will print an endless stream of numbers. The problem isthat the variablei isof unsi gned type
and unsigned types are always greater-than-or-equal-to 0. Thus, the termination condition of the
for-loop (i >= 0)isalwaystrue. Theiteration statement i - - takesthevaueofi from0to
65535 rather than -1, as expected.

These forms of subtle complexities and pitfalls are most likely the reason that Java has no
unsigned types. Note, however, that good compilers (including BCC32) will issue awarning indi-
cating that the termination condition of the for-loop is aways true. MORAL : Do not ignore com-
piler warnings.

2.4 Real Data Types
C has three data types that can represent real numbers:

 float
* double
* |long double

Thef | oat typeisused to represent single-precision numberswhilethe doubl e type represents
double-precision numbers. Thel ong doubl e typeisused for even more precision. Typically,
thef | oat type occupies 32 hits, the doubl e type occupies 64 bits, and thel ong doubl e
type occupies 80 bits, but again these bit widths are not specified in the C language standard.

2.5BCC32 Implementation

For the BCC32 compiler, the actual sizes of the basic datatypes along with their allowable ranges
areshown in Table 1 below.

2.6 Thevoi d Type
We have seen function declarations of the form:

void mai n(void) {

10

The C Chest Sheet

Table 1: Basic Data Typesfor BCC32

Revision 1.0

September 5, 2000

o Minimum | Maximum
Data Type Bit Width Value Value
char 8 -127 127
short 16 -32768 32767
I nt 32 o8 23l _4
| ong 32 o8 23 _q
unsi gned char 8 0 255
unsi gned short 16 0 65535
unsi gned i nt 32 0 5% _ 4
unsi gned | ong 32 0 5% _ 4
fl oat 32 _3.4" 10% 34° 10%
doubl e 64 17 108 | 17 10%®
| ong doubl e 80 _11710%%2 | 1.1 107

The keyword voi d instead of adatatype indicates “no type”, i.e., nothing there. Thus, afunction
declared asreturning avoi d typeinfact does not return any value. Similarly, when the argument
list of afunction is simply declared asvoi d (as with the example above) then the function does
not take any arguments.

Variables cannot be declared to be of voi d type (although pointersto voi d type are useful, but
we defer this discussion until Section 6.3).

3.0 Control Flow
The structures that C implements for directing the flow of a program are:

» Sdlection (usingi f/ el se/ endi f andswi t ch/ case)
* [teration (using f or ,whi | e, and do/ whi | e)
» Direct (using got o, br eak, cont i nue, return)

31Theif/el se/endi f Statements
Thei f statement only executes code if a given expression istrue. For example:

#i ncl ude <stdi 0. h>

11

The C Cheat Sheet Revision 1.0 September 5, 2000

void main(int argc, char *argv[]) {
if (argc > 1) {
printf(“You passed sone conmand-|ine paranmeters.\n");
} else {
printf(“You passed no command-1|ine paraneters.\n");
}

}

Immediately following thei f statement must come an expression enclosed in parentheses. If the
expression evaluates to true (i.e., a non-zero value) then the code following thei f (up to the
el se) is executed, otherwise the code following the el se is executed.

Note that the el se-clauseis optional. We can simply write, for example:

#i ncl ude <stdi 0. h>

void main(int argc, char *argv[]) {
if (argc > 1) {
printf(“You passed sone conmand-|ine paranmeters.\n”);

}

3.2 Compound Statements

The use of curly brackets above introduces the important notion of a compound statement. The
actual syntax of theif statement is:

i f (expression) statenent;

That is, only one statement is allowed to follow. However, a compound statement enclosed in
curly brackets is equivalent to a single statement. Thus, we are allowed to write:

if (expression) {
st at enent ;
st at enent ;
st at enent ;

}

Thus, the above example could have been written more concisely as:

#i ncl ude <stdio. h>

void main(int argc, char *argv[]) {
if (argc > 1)
printf(“You passed sone command-|ine paranmeters.\n");

}
Only one statement followed thei f thuswe do not really need the curly brackets.

12

The C Cheat Sheet Revision 1.0 September 5, 2000

Take note, however: it is strongly recommended that you always use curly brackets, even when
you only write one statement. Why? Imagine that you wanted to augment the program above to
also indicate how many command-line parameters were passed. The following would be a com-
mon way for a new student of C to proceed:

#i ncl ude <stdio. h>

void main(int argc, char *argv[]) {
if (argc > 1)
printf(“You passed sone command-|ine paranmeters.\n");
printf(“ln fact, you passed % paraneters\n”, argc-1);

}

The above code is not what was intended. Adding an extra statement requires that we include
curly brackets now to create a compound statement. The correct code is:

#i ncl ude <stdi 0. h>

void main(int argc, char *argv[]) {
if (argc > 1) {
printf(“You passed sone conmand-|ine paranmeters.\n”);
printf(“ln fact, you passed % paranmeters\n”, argc-1);

}

Had those curly brackets been in the program already, the error would not have been introduced.
Thisis an example of defensive programming style. Assume you are going to make errorsin writ-
ing the code and prevent them. Always writing compound statements even when not necessary is
agood thing to do. Thiswill be even more important when writing el se-i f statements (see
below).

3.3Nested i f Statements
It is possible to choose from several blocks of code using nested i f statements. For example:

#i ncl ude <stdio. h>

void main(int argc, char *argv[]) {
if (argc < 2) {
printf(“You need to enter at |least 1 paraneter\n”);
} else if (argc < 4) {
printf(“Everything is OK\n");
} else {
printf(“You entered too many paraneters.\n”);
}

}

Thisisa“nested” i f statement becausethereisnotrueel se-i f statement in C. The else-if part
isactually another i f statement nested within theel se clause of thefirst. More obviousindenta-
tion and extra curly brackets will highlight this:

#i ncl ude <stdio. h>

13

The C Cheat Sheet Revision 1.0 September 5, 2000

void main(int argc, char *argv[]) {
if (argc < 2) {
printf(“You need to enter at |least 1 paraneter\n”);
} else {
if (argc < 4) {
printf(“Everything is OK\n");
} else {
printf(“You entered too many paraneters.\n”);
}

}

Thisis one situation (and perhaps the only situation) where the extra curly brackets aren’t really
needed and just clutter up the program. The first form of the exampleis preferred for clarity.

3.4Thesw t ch/ case Statement

Thesw t ch/ case statement isessentially equivalenttoi f/ el se/ endi f but with afew
twists. Here is an example:

#i ncl ude <stdio. h>

void main(int argc, char *argv[]) {
switch (argc) {
case O:
case 1:
printf(“You need to enter at |east 1 paraneter\n”);
br eak;

case 2:

case 3:
printf(“Everything is O\ n");
br eak;

def aul t:
printf(“You entered too many paraneters.\n”);
br eak;

}

The expression following the swi t ch statement is evaluated (it must be an integer-valued
expression) and the subsequent case statements are examined for a match. As shown in the
example, multiple case statements may lead to the same code. Thedef aul t clause (whichis
optional) istaken if none of the case statements match.

Why are all those br eak statements there? Thisis one of the twists of theswi t ch/ case state-
ment. The br eak statement skips past all other cases, past the end of thewholeswi t ch/ case
code. Without abr eak statement in a case-clause, the program begins to execute the next
case-clause! For example:

#i ncl ude <stdi 0. h>

void main(int argc, char *argv[]) {

14

The C Cheat Sheet Revision 1.0 September 5, 2000

switch (argc) {
def aul t:
printf(“argc is bigger than 1\n");
/1 No “break” so fall through to next case!
case 1:
printf(“argc is bigger than 0\n");
}

}

With ar gc>1, both pri nt f statementswill be executed. It is good practice when taking advan-
tage of this behavior to include a comment indicating that thisis the intention, rather than making
the reader wonder whether or not you simply forgot to include abr eak statement.

Many programmers claim that swi t ch/ case isunnecessary sincei f/ el se/ endi f hasthe
same capabilities, plus dynamic expressions are allowed in the “ case-clauses’ rather than fixed
integers (asrequiredin swi t ch/ case clauses). It is possible, for example, to write:

if (argc >= 100 && argc <= 200)
but using swi t ch/ case, we would need to enumerate all 100 possible case statements:

case 100:
case 101:
case 102: (etc.)

Thereis, however, one subtle benefit to swi t ch/ case in certain cases. Because the case-
clauses are keyed to fixed integers, this allows the compiler to perform optimizations. If, for
example, the case-clauses represent a“well-packed” set of integers, the compiler can generate a
jump table indexed by the switch expression, which may be a much faster implementation than
if/lelselendif.

Finally, and this may be a matter of taste, swi t ch/ case statements are more legible and more
easily modified thani f / el se/ endi f statements and are preferred programming style for
selecting between fixed integers.

3.5Thef or Statement
Thef or statement isavery compact form of iteration. The syntax of this statement is:

for (INITIALI ZE; TEST; | TERATE)
STATEMENT,;

The sequence of operationsis asfollows:

INITIALIZE

if TEST evaluatesto O, terminate the loop
STATEMENT

ITERATE

if TEST evaluatesto 0O, terminate the loop

15

The C Cheat Sheet Revision 1.0 September 5, 2000

e STATEMENT
 ITERATE
» if TEST evaluatesto O, terminate the loop

and so on. Recall that STATEMENT may actually be a compound statement enclosed in curly
brackets.

Some things to note:

* ThelNITIALIZE, ITERATE, and STATEMENT components are all statements

* TheTEST component is an expression

» The STATEMENT component may never be executed because TEST is evaluated
immediately after INITIALIZE.

Hereis an example:

#i ncl ude <stdio. h>
void main(int argc, char *argv[]) {
int i;
for (i=0; i < argc; i=i+1) {
printf(“Argurment % is %\n", i, argv[i]);
}
}

The INITIALIZE statement in this case executes ‘i =0’. Then, thevalue of i iscompared to

ar gc and the loop does not execute if the comparison isfalse. Otherwise, thepr i nt f statement
is executed and then the ITERATE statement ‘i =i +1’ executes. This process repeats (i.e.,
TEST-STATEMENT-ITERATE) until the expression ‘i < ar gc’ isno longer true.

Note that the declaration of avariable within the INITIALIZE statement is not allowed, asitisin
J Java. For example, the following islegal in Java (and C++) but illegal in C:

for (int i=0; i < argc; i=i+1) /1 ITLLEGAL in C

3.6 Thewhi | e Statement

Thewhi | e statement isasubset of thef or statement in that it only implements a TEST expres-
sion. For example:

#i ncl ude <stdi 0. h>

void main(int argc, char *argv[]) {
int i;

i =0; /1 I NITI ALI ZE

while (i < argc) {
printf(“Argurment % is %\n”, i, argv[i]);
i =i+l /] | TERATE

16

The C Cheat Sheet Revision 1.0 September 5, 2000

}

The compound statement following the whi | e expression executes as long as the expression is
true. Aswiththef or statement, thewhi | e loop may never executeif the expressionisn’'t trueto
begin with.

Even though it appears that the whi | e statement is unnecessary, given that f or doesit all, the
whi | e statement isvery common in most programs. In many cases, no initialization is necessary
and the iteration part of the loop is embedded in the statements that are executed.

3.7 Thedo/ whi | e Statement

A dlight variation on the while statement isdo/ whi | e. Here is a variation on the example from
above:

#i ncl ude <stdio. h>

void main(int argc, char *argv[]) {
int i;

i =0; /1 INITI ALI ZE

do {
printf(“Argurment % is %\n", i, argv[i]);
i =i+l /1 1 TERATE

} while (i < argc);
}

The form of the do/ whi | e statement is:

do {
STATEMENT;
} whil e(TEST);

Note that the STATEMENT component is executed at least once, regardless of whether or not
TEST istrue. For thisreason, this exampleis not exactly equivalent to the prior examples using
for andwhi |l e.

3.8 Thebr eak Statement

The br eak statement can be used to prematurely terminate aloop. We have seen that it can also
be used to exit aswi t ch/ case structure.

In aloop, the br eak statement causes the loop to terminate immediately and execution to pro-
ceed with the statements following the loop. For example:

#i ncl ude <stdi 0. h>

void main(int argc, char *argv[]) {
int i;

for (i=0; i < argc; i=i+1) {
if (i >= 10) {

17

The C Cheat Sheet Revision 1.0 September 5, 2000

br eak; /1 Only print the first 10 argunents
}
printf(“Argurment % is %\n", i, argv[i]);
}

/1l *“break’ statenent takes us here

}
The behavior for whi | e loopsand do/ whi | e loopsisidentical.

Note that Java's labelled break statements (e.g., ‘br eak out er; ') arenot allowed in C. But
J see the got o statement in Section 3.10 below which can be used to implement this feature.

3.9Theconti nue Statement

Thecont i nue statement proceeds to the next iteration of aloop, skipping the remaining state-
ments. Inaf or loop, thecont i nue statement causes execution to jump to the ITERATE clause
of thef or statement:

#i ncl ude <stdio. h>

void main(int argc, char *argv[]) {

int i;

for (i=0; i < argc; i=i+1) {
/1 Skip over first three argunents
if (i <3) continue; // Junps to “i=i+1" above
printf(“Argurment % is %\n", i, argv[i]);

}

}

Inawhi | e loop, thecont i nue statement returns to the top of the loop to once again evaluate
the while-expression. This can lead to some unexpected errors:

#i ncl ude <stdio. h>

void main(int argc, char *argv[]) {

int i;

i = 0;

while (i < argc) {
if (i <3) continue; // Junps to test 'i < argc’ above
printf(“Argurment % is %\n", i, argv[i]);
=i + 1;

}

}
This code doesn’'t work! The problem isthat the iteration ‘i =i +1’ is never executed since the

cont i nue statement jumps back to the while-expression.

Inado/ whi | e loop, thecont i nue statement jumps to the bottom of the loop to evaluate the
while-expression.

18

The C Cheat Sheet Revision 1.0 September 5, 2000

Note that Java slabelled continue statements (e.g., ‘cont i nue out er;) arenot allowedin C.
| But see the got o statement in Section 3.10 below which can be used to implement this feature.

3.10 Thegot o Statement

The got o statement can be used to jump to any other statement at the same (or lower) level of
nesting. That is, you can’t jump into the middle of aloop, and you can’t jump from one function
to another, etc. For example:

#i ncl ude <stdi 0. h>

void main(int argc, char *argv[]) {
int i;

got o ohl et sjustskipit;

for (i=0; i<argc; i=i+1) {
printf(“Argurment % is %\n", i, argv[i]);
}
ohl et sj ust ski pi t: /1 This is a | abe

}

The got o statement above transfers execution to the label (declared by writing an identifier fol-
lowed by a colon), skipping all statementsin between.

Note that Java does not have agot o statement. Why? The idea of simply jumping from one
J statement to another is not consistent with structured programming ideals. The abuse of this state-
ment in other languages (like BASIC) led to spaghetti programming, in which the flow of execu-
tion in a program would jump back and forth, making it difficult to understand and modify the
program. The introduction of labelled br eak/ cont i nue statements as well as structured
exception handling (t r y/ cat ch) in Java have removed all justifiable needs for keeping got o
in the language.

One of the main uses for the got o statement in C (some would say the only use) isto duplicate
the functionality of labelled br eak/ cont i nue statementsin Java. That is, we would often like
to be able to either break or continue the non-inner-most loop. For example:

#i ncl ude <stdio. h>

void mai n(void) {
int i,j;

for (i=0; i < 10; i=i+1) {
for (j=0; j < 10; j=j+1) {
if (2%i+ > 50) {
goto alldone; // Like a “doubl e break”

}
}

al | done:

}

19

The C Cheat Sheet Revision 1.0 September 5, 2000

A br eak statement instead of the got o above would only have terminated the innermost loop,
proceeding to the ‘i =i +1’ iteration statement of the outermost loop, which is not the desired
behavior.

Similarly, the got o statement can also be used to “escape” from a deeply nested structure in the
case of an error condition:

void mai n(void) {

while (...) {
for (...;...;...) {
if (...) {
while (...) {
if (error) goto BigError;
}
}
}
}
goto Al | Done; /1 Finished without errors
Bi gError:

// Handl e errors here

Al | Done:
}

In Javaand C++, this type of escape mechanism is handled by structured exception handling
usingtry/ catch.

3.11 Ther et ur n Statement

Ther et ur n statement is used to immediately exit from afunction and return to the function’s
caller. For functions declared asreturning avalue, ther et ur n statement must be followed by an
expression indicating the return value. The compiler may cast this value to the return type as nec-
essary. For functions declared as returning voi d, i.e., no value, ther et ur n statement must
stand by itself.

Here is an example showing the use of ther et ur n statement in several locations in a subroutine.

long int factorial (int N) {
if (N<2) {
return 1; /] 0Ol==1, 1!==

}
return Nfactorial (N-1);

}

In general, good programming practice dictates that there should be few, preferably just one,

r et ur n statementsin afunction. This makes debugging easier asthe exit points of afunction are
more constrained. This means lesswork isrequired to ensure that a function does not return unex-
pectedly during a debugging session.

20

The C Cheat Sheet Revision 1.0 September 5, 2000

4.0 Expressions and Operators

A C expression is composed of variable names, constants, function calls, and operators to com-
bine them. We have already encountered “obvious’ expressions of theform‘i < argc’.

4.1 Basic Arithmetic Operators

The operators +, -,/ , and * perform addition, subtraction, division, and multiplication, as
expected. Even at thislevel of simplicity, things can get interesting:

* What happenswhenweadd ani nt toaf | oat ?
* What happens when we write 7/4?

4.2 Promotion and Casting

The answer to the first question above is given by the promotion rulesin C, which state that when
two quantities are involved in an expression, the “smaller” oneis converted to the type of the
“bigger” one. A f | oat quantity can represent integers, but integers can’t represent reals. Thus,

f1 oat is“bigger than” i nt .1 These promotion rules also determine the type of the overall
expression.

For example:

int i = 2;
double f = 1.0;

f =f +1i; /] i is pronoted to double type, expression is double type
i =i +3; // bothi and 3 are ints, expression is int type
i =f +1; /] ?2??

In the expression ‘f +i ', the integer variablei ispromoted to adoubl e and takes on the value
1.0. Thisvalueisthen added tof and the result is an expression of type doubl e.

In the expression ‘i +3’ both operands are of integer type thus no promotion is necessary and the
expression is of typei nt .

Now let'slook at ‘f +1’. The constant 1 is of integer type thus must be promoted to doubl e type
with value 1.0. The resulting expression isof doubl e type, but we are trying to store thisinto an
integer! Thistype of “reverse promotion” (demotion?) can result in aloss of data (how do we rep-
resent 3.5 as an integer?) so it requires more intervention (i.e., the compiler does not perform
demoation).

We need to tell the compiler our intention to demoteadoubl e toani nt using an operator
known as a cast:

i = (int) (f+1); [// double expression f+1 casted to int type

1. Notethat thisis an attempt to provide an intuitive explanation of promotion rules, which arein fact very
clearly and thoroughly defined in reference texts. These rules, however, are lengthy and involved and it is
suggested that the intuitive approach be your guide.

21

The C Cheat Sheet Revision 1.0 September 5, 2000

In this cast, the real-valued quantity ‘f +1’ will have its fractional part discarded and the integer
part stored in the variablei .

The answer to the second question above (*What happens when we write 7/47") isthat we get the
integer 1. Because both 7 and 4 are integers, the operation is of integer type and integer divisionis
performed (i.e., reals are truncated to remove the fractional part). If we expect an answer of 1.75,
then we must somehow indicate that real division isto be performed. Either one of the operands
must be of real type for this to happen. For example:

 7.0/4.0
e 7/40
« 7.0/4

A common mistake in arithmetic computationsisto forget that promotion isonly performed when
necessary for a specific operation, not for the overall expression. For example, suppose we
wanted to express a probability as a percentage, in which we have two integersheads and

t ot al Fl i ps. The percentage (areal number) is given by:

heads/t ot al Fl i ps*100.0 /1 This is WRONG

This code won't work. Assuming heads islessthant ot al Fl i ps, theinteger division of
heads byt ot al FI i ps will be0. Thisispromoted to a0 of typedoubl e prior to multiplying
by 100.0 but by then it’ s too late.

We want to perform real division of two integers. We can use a cast to force one of the division
operandsto doubl e type, thus causing both division operandsto be of doubl e type (the second
oneis automatically promoted):

(doubl e) heads/total Fl i ps*100.0 /1 This is R GHT
Another way to do it isto force promotion to doubl e type as early as possible:
100. O*heads/total Fl i ps

In this case, the multiplication is performed first (associativity is left-to-right) thus promoting
heads to doubl e type.

4.3 MoreArithmetic Operators

The modulo operator ‘%' computes the remainder of dividing its two integer operands. For exam-
ple, ‘7% 4’ isequal to 3.

The increment operator ‘++ and decrement operator ‘- -’ are shorthand ways of adding or sub-
tracting 1 from an integer-valued variable. For example, ‘i ++’ isequivalentto ‘i =i +1’ and

‘] --"isequivaentto‘) =j - 1.

The increment and decrement operators can be applied in both prefix and postfix form. The differ-
ence liesin what the value of the expression is (yes, the statement ‘i ++’ isin fact an expression).

22

The C Cheat Sheet Revision 1.0 September 5, 2000

Let’slook at an example:

int i,j;

i =3;

] i ++; /1 j=3, i=4

Note that the value of the expression ‘i ++’ isthevalue of i before incrementing. Now consider:

int i,j;

i =3;
J =

4 Il j=4, i=4

With the prefix form of the operator, the value of the expression ‘++i ' isthevalueof i after
incrementing.

4.4 Assignment Operators

It may bend your mind a bit to think of the statement ‘i =3’ as an expression with ‘=" as an oper-
ator, but thisisthereality. In C, just about everything is an expression (except for function/vari-
able declarations, flow control statements, and afew other things). The “statement” ‘i =3’ is
actually an expression whose valueisthe left-hand-side (i.e., thevariablei after the assignment is
performed). Thus, the following islegal:

j :(|:5)+3, //J:8’ i =5

Just as‘i ++’ isashortcut for ‘i =i +1’, there are shortcut assignment operators, too. For exam-
ple, ‘f *= 5.2 isashortcut for ‘f =f *5. 2’. The full suite of shortcut assignment operatorsis
shown in Table 2 on page 28.

4.5 Bitwise Operators

The bitwise operators can be used to operate on individual bits of an integer rather than on the
number as awhole. For example, the bitwise AND operator ‘&’ computes the logic AND func-
tion on every bit of its operands:

char i,j;

i =0OxOF; /1 In binary, i is: 00001111

j =1 & OxF8; /1 In binary, OxF8 is: 11111000
/[l So i & OxF8 is: 00001000

Thusj will have the value 8. The bitwise OR operator ‘| computes the logic OR function while
the bitwise XOR operator ‘' computes the logic XOR function.

All of the above are binary operators, requiring two operands. The unary operator ‘~' only takes

one operand and computes the one's complement. For example, ‘~0' yields aresult that has all
bits set (the number of bits depends upon the number of bitsinthei nt type).

23

J]

The C Cheat Sheet Revision 1.0 September 5, 2000

The bitwise shift operators ‘<<* and *>>’ shift al bits of the |eft-hand operand either left or right
by the number of bits specified in the right-hand operand. For example:

char i = 0x80; /1 In binary, i is: 10000000
i =10 > 1; /1 Shift right by 1 bit: 01000000
i =1 >> 5 /1 Shift right by 5 bits: 00000010
i =i > 3 /1 Shift right by 3 bits: 00000000

The ‘<<’ operator isfairly straightforward: al bits are shifted left and 0-bits shift in from the
right.

The ‘>>" operator is dlightly more complicated in that its behavior depends upon whether we are
operating on asigned or unsigned integer. For signed integers, the right-shift isarithmetic, i.e., the
uppermost bit (the sign bit) is kept the same. For unsigned integers, the right-shift islogicdl, i.e.,
the uppermost bits are filled with 0’'s. For example:

signed char i = -1, /1 In binary, i is: 11111111
unsi gned char j = 255; // In binary, j is: 11111111
=i > 1 10 is: 11111111
i = > 1 Il is: 01111111

Java has the additional operator ‘>>>" which is not present in C. This operator performs alogical
right-shift (shifting in 0’ s to the upper bits). Since Java does not support unsigned integers, this
operator is required to support logical right-shiftsin Java but is unnecessary in C.

4.6 Relational Operators
The relational operators (listed below) all return O if the relation is false and non-zerot if true:

« == (equality, note double-equals)
« ! =(non-equality)

e <, >, <=, >=

4.7 Logical Operators

The unary logical negation operator ‘! * returns non-zero if its operand is 0 and returns O if its
operand is non-zero. Thus, the expression ‘! (a<b)’ isequivalentto‘(a>=b) .

Thelogical AND operator ‘&&’ returns non-zero if both its operands are non-zero quantities.
This operator is frequently used to ensure multiple conditions are true. For example:

if ((i >=0) & (j >=0) & (k >=0)) { ...

Similarly, thelogical OR operator ‘||’ returns non-zero if either of its operands are non-zero quan-
tities.

1. Another example where the C language specification does not specify what this non-zero value should
be. In most cases, truth is represent by 1, sometimes by -1. But falsity isalwaysQ0in C.

24

The C Cheat Sheet Revision 1.0 September 5, 2000

Notethat ‘& &’ (logical AND) and ‘&’ (bitwise AND) are frequently confused leading to pro-
gram errors. A useful convention is to define the following:

#defi ne AND &&
#define OR ||
#defi ne NOT !

allowing us to write more readable (and less error-prone) statements:
if ((i >>0) AND (j >=0) AND (k >=0)) { ...

Another aspect of thelogical AND and OR operatorsis deferred evaluation (sometimes known as
lazy evaluation). The basic concept isthat if the result of the overall expression is certain at any
point, the remaining components of the expression are not evaluated. Consider, for example, the
assignments‘i = 5’,'] = -5,and‘k = 10’.Inthei f statement above, the following would
occur:

* Thesubexpression‘(i >= 0)’ evaluatesastrue, thusthe overal expression may be
true. We now have to consider the next subexpression.

 Thesubexpression‘(j >= 0)’ evauatesasfase, thusthe overal expression isdefi-
nitely false (L AND O AND lisfase, i.e, 0).

» At thispoint, the whole expression’s value is known and the final subexpression *(k
>= (') isirrelevant. Due to deferred evaluation, this expression is not eval uated!

Apart from saving some execution time, deferred evaluation can lead to some compact code. Con-
sider, for example, an attempt to divide by an unknown quantity that may be O:

(denom!= 0) && (f =f / denom;
What looks like an expression (and is) is actually equivalent to:
if (denom!= 0) {

f =f / denom
}

but is more compact. The reason thisworksisthat if ‘(denom ! = 0) ’ failsto betrue, the actual
division is not performed (due to deferred evaluation) sinceitsvalueisirrelevant in the logical
AND computation.

4.8 The Conditional Oper ator

The conditional operator ‘?: ’ islikean embeddedi f / el se/ endi f statement. Whereas the
latter is atrue statement and cannot be used in an expression, the conditional operator can. We
have already seen the definition of the ‘max’ macro (written here without the safety parentheses):

#define max(x,y) (x >y ? x : vy)

25

The C Cheat Sheet Revision 1.0 September 5, 2000

The above definition leads to two equivalent statements:

z = max(x,y); /1 Statenent 1
if (x >y) { /1 Statenent 2
zZ = X;
} else {
z =y;

}

The syntax of the conditional operator is:
EXPR ? TRUE_CLAUSE : FALSE CLAUSE

First, the EXPR expression is evaluated. If true, the value of the conditional operator is the result
of executing the TRUE_CLAUSE. Otherwise, the value of the conditional operator isthe result of
executing the FALSE_CLAUSE. Note that both clauses must be “compatible’ in type (again,
there are awhole host of rules that govern this). Thus, the following would beillegal:

(i >0) ?25: “Hello” /1 1 LLEGAL

We cannot have this expression return integer type in one case and a string in the other. We can,
however, mix integers and reals (for example) wherein standard promotion rules would apply.

4.9 The Comma Oper ator

A strange operator, thecomma*, ’ issimply used to evaluate multiple expressions asif they were
asingle expression. All expressions separated by a comma are evaluated, and the value (and type)
of the expression is the value (and type) of the last expression. For example:

code = ((i >0) ?25: (printf(“Error!'\n”), 0));

The clause following the colon is an expression containing two sub-expressions separated by a
comma. Thefirst sub-expression (the call to pri nt f) isevaluated and ignored, then the second
expression (simply 0) is the result.

The most common use of the comma operator isinf or statements allowing multiple initializa-
tions, tests, or iteration statements. Consider, for example, some compact code for reversing the
bitsin a 32-bit integer:

int reverse(int i) { /1 Assumes int is a 32-bit integer
i nt mask;
int rev;
int orval ue;
for (rev=0, mask=0x80000000, orval ue=1
mask ! = 0;
mask = mask >> 1, orvalue = orvalue << 1) {
rev =rev | ((i & mask) ? orvalue : 0);

}

return rev;

26

J

The C Cheat Sheet Revision 1.0 September 5, 2000

Note the use of the comma operator in both the initialization and iteration components of thef or
statement.

Java does not have the comma operator. This might be a good idea since the commaiis also used
to separate parametersin function calls. This dual use of the comma can be very confusing.

4.10 Operator Precedence and Association

Thereis an implied precedence of operators (for example, ‘2+i * 3’ evaluates‘i * 3’ first, as
expected) aswell as an implied associativity. The associativity of an operator indicates the order
in which multiple instances of the operator are evaluated. For example, ‘2*3*4*5’ is evauated
first as*2*3, then the result multiplied by 4, then multiplied by 5. In other words, thisisreally
‘((2*3)*4)*5. Thisisleft-to-right associativity.

For an example of right-to-left associativity, as exhibited by the assignment operator, consider the
statement:

This statement is computed using right-to-left associativity, as follows:

b= (] = (k=0));

Table 2 below summarizes the precedence and associativity of al operatorsin C. Thistable lists
operators from highest to lowest precedence. Operatorsin a single group have equal precedence.

Mostly, things make sense with afew exceptions. For example:

mask<<l + 1
isactually
mask << (1+1)

since addition has higher precedence than bit shifts. Be careful and use parentheses liberally.

5.0 Program Structure

At some point, placing all of your codeinthemai n() function will become unwieldy. It will
then be necessary to split your codeinto multiple functions. Once a sourcefile starts accumulating
many functions, it too will become unwieldy. At this point it will become necessary to split your
code across multiple files. In this section we discuss the structure of a C program split across mul-
tiple sourcefiles, include files, and library files.

5.1 Declaring Functions

We have aready seen an example of afunction, the mai n() function. Other functions can be
declared in the same file as the one with the mai n() function. Let’slook at an example:

#i ncl ude <stdio. h>

27

The C Chest Sheet

Revision 1.0

Table 2: Precedence and Associativity of C Operators

September 5, 2000

Operators Function Associativity
[] Array dereference L eft-to-right
@) Function call
: Structure member dereference
-> Structure pointer dereference
postfix++ Postincrement
postfix- - Postdecrement
++prefix Preincrement Right-to-left
- - prefix Predecrement
si zeof () Sizein bytes of given type or variable
& Address-of
* Pointer dereference
+ Unary positive
- Unary negative
~ One’'s complement
! Logical complement
(type) Cast operator Right-to-left
*l, % Multiply, divide, modulo L eft-to-right
+, - Addition, subtraction L eft-to-right
<<, >> Bit shifts L eft-to-right
, >, <=, >= Comparison operators L eft-to-right
==, I= Comparison operators L eft-to-right
& Bitwise AND L eft-to-right
A Bitwise XOR L eft-to-right
| Bitwise OR L eft-to-right
&& Logical AND L eft-to-right
[] Logical OR L eft-to-right
?: Conditional operator (if-then-else) Right-to-left
, =, =, Y%, +=, -=, Assignment operators Right-to-left
<<=, >>= &:, N= =
: Comma operator L eft-to-right

28

The C Cheat Sheet Revision 1.0 September 5, 2000

doubl e pol y(double x) {
/1 Eval uate the pol ynonial:

/1 4x"3 - 2x"2 + x + 5
/1 using Horner’s rule.

doubl e val

val = 4*x-2

val = val*x + 1;

val = val *x + b5;

return val

}

void mai n(void) {
int i;

for (i =-5 i <=5; i++) {
printf(“(%, %@)\n", i, poly(i));
}
}

This program prints as ordered pairs the integers from -5 through 5 as well as the value of the
polynomial (listed above) evaluated at these points. Note that there are two functionsin this
sourcefile: pol y and mai n. Any number of functions may be present in a source file, but the
definition of a function must be known to the compiler prior to itsinvocation (in other words:
defineit before you useit).

Suppose we had swapped the two functions above, with the mai n function appearing before
pol y. The compiler would have reported an error: “Call to function ‘poly’ with no prototype”.
Thisis because the compiler has not encountered the definition (i.e., the prototype) for pol y
prior to itsuse withinthepr i nt f statement.

There are two ways to address this problem. First, and most obvious, define afunction before
using it. Second, use the ext er n keyword to introduce a function’s prototype before actually
writing the code for it:

#i ncl ude <stdio. h>
ext ern doubl e pol y(doubl e); /1 Prototype only, no code

void mai n(void) {
/1 main code goes here

}

doubl e pol y(double x) {
/1 actual code for poly goes here

}

Theext er n keyword indicates an “external function prototype” so that the compiler knows this
function’s return value and “signature” (i.e., the parameters and their types). The actual code for
pol y, of course, must match its prototype.

29

The C Cheat Sheet Revision 1.0 September 5, 2000

This use of the ext er n keyword is most common in include files, which we discussin Section
8.2.

Only one function with a given name may be defined. Unlike Java, C does not support overload-
J | ing (i.e., two functions with the same name but different signatures).

5.2 Calling Functions

We have already seen many examples of calling functions and it should be fairly clear how thisis
achieved: the function’s name is followed by parentheses and some number of arguments.

Oneissue that does arise, however, is what happens when the expected type of a function param-
eter doesn’t match what is passed. Note in the example above that we passed an integer to the
pol y function but this function expected adoubl e parameter. Isthisan error? No, the standard
promotion rules apply.

Note that there is an insidious behavior in the reverse direction: a mismatch in types will cause a
silent demotion! If, for example, a function expects an integer but adoubl e is passed, the dou-
bl e isslently (i.e., without warning) casted to an integer!

5.3Local Variables

All variables defined inside a function are local to that function. This means that other functions
can’'t access those variables, and the variables are only “aive’ while the function is executing
(i.e., their values don’t persist from one function call to the next).

An exception to the persistence issue above are variables declared with the st at i ¢ keyword.
These variables do retain their value for the duration of the program. These variables are fre-
guently initialized and used either as counters or as flags to indicate whether the initialization of
some process has occurred. For example:

void countme(void) {
static int firstTine
static int counter =

= 1;
0;
if (firstTime) {
firstTime = 0;
printf(“This is the first tinme in countne\n”);

}

printf(“countne has been called %l tines\n”, ++counter);

}

Had the two variables above not been declared st at i ¢, they would have been initialized to 1
and 0, respectively, upon every invocation of count rne.

30

The C Cheat Sheet Revision 1.0 September 5, 2000

5.4 Global Variables
Variables declared at file scope (i.e., outside any function) can be accessed by any function in the

file. Like static local variables, these global variables persist for the duration of the program (until
changed).

Global variables can be used to communicate from one function to another but thisis not recom-
mended (that’s what function parameters are for!) A good use for global variablesisto use them
as type-safe constants. We can always use the preprocessor to write, for example:

#define Pl 3.1415926536

but thisisjust atext substitution. It doesn’t tell the compiler we're defining areal number. More
type-safe isto write (as aglobal variable):

const double PI = 3.1415926536;

Then, any function in thisfile can make use of the variable Pl and know that it’s intended to be a
doubl e guantity.

Theconst keyword indicates that the variable Pl may never be modified. Attempting to assign
to it will cause a compile-time error.

6.0 Advanced Data Types

Beyond the scalar-valued types of integers and reals, C supports arrays, structures, enumerated
types, bitfields, and pointers.

6.1 Arrays

Arrays are very commonly encountered in C. They ssmply represent many quantities of the same
type. For example:

int v[5];

represents 5 integers rather than simply 1 integer. These integers can be accessed asv[0] , v[1] ,
etc. uptov[4] . NOTE: Arrays are declared with the number of elements that they contain but
the maximum element index is this number minus 1 (since array indices start at 0).

Note that the square brackets[] actually represent an operator (known as array der eference)
which has arelative priority and associativity, as shown in Table 2 on page 28.

Java programmers should immediately note a difference. Arrays are declared directly with their
given size rather than using a two-step process of declaring areference to an array then using the
new operator. But note that Java' s approach isreally a use of pointers, as explained in Section
6.3. In addition, C arrays are not objects. They don’t have methods, and most importantly, they
don’'t know their own size (i.e., thereisno ar r ay. | engt h method). For thisreason, C arrays
are not bounds-checked. Accessing an array element beyond the end (or before the beginning) of
a C array may well crash the program rather than generate an orderly exception, as with Java.

31

The C Cheat Sheet Revision 1.0 September 5, 2000

Hereis an example, using arrays, of afunction named pol yN that evaluates an arbitrary-length
polynomial given the coefficients of this polynomial in an array:

doubl e pol yN(doubl e x, double coeffs[], int nunCoeffs) ({
int i;
doubl e val = 0.0;

for (i=0; i < numCoeffs; i++) {
val = val *x + coeffs[i];

}

return val

}

Note that array parameters in functions can not be declared with a size so that arbitrary-length
arrays may be passed. However, we must also pass an extra parameter to indicate how many ele-
ments are actually in the array, since thisis not a property of the array itself.

Two-dimensional (and higher-order) arrays may be declared as in this example:
int twod[5][3];

In this case (and al higher-order cases) array parameters must have all dimensions specified
except possibly for the last. This makes arbitrary-size two-dimensional arrays difficult to pass as
parameters (we generally just use pointers). The ability to define classes in C++ and Javathat
properly implement higher-order array behavior greatly improves our expressive power in this
respect.

6.2 Structures
A structure represents a collection of variables bound together under one name. For example:

struct pixel {
int x,vy,z;
doubl e intensity;
doubl e | um nance

}s

Thetwowords ‘st ruct pi xel ' now behave as abuilt-in type, with certain restrictions. For
example, we may declare avariable of this type:

struct pixel one_pixel

or awhole array of them:
struct pixel allPixels[128];

We access the members of this structure using the member dereference operator ‘. * (see Table 2
on page 28 for this operator’ s precedence and associativity). For example:

one_pi xel . x + one_pixel.y + one_pixel.z

32

The C Cheat Sheet Revision 1.0 September 5, 2000

For Java and C++ programmers, structures are simply classes without methods and with al vari-
ables public. Note, however, that C does not support assignment of structures. It isillegal to
assign one structure variable to another. Y ou must either copy each member one item at atime or
perform a memory-to-memory copy (see Section 7.3).

6.3 Pointers

Ah, yes. Pointers. At last, we arrive at the most dreaded word in the lexicon of the C student.
Pointers are indeed so dreaded that Java has completely done away with pointers and wrapped
their functionality into the (admittedly safer) concept of references. C++, as atransitional step,
has both pointers and references.

Pointers are important, however, because there is a close association between this data type and
the underlying hardware architecture of digital computers. By distancing ourselves from the
pointer concept, we may achieve fewer programming errors and fewer headaches, but we increase
the distance between our code and “the bare metal.” This distance, in many engineering applica-
tionsinvolving low-level hardware interactions, should be as small as possible.

Every variable in C occupies some memory. This memory resides at a certain address. A pointer
variable is capable of storing the address of another variable. That’sit.

Hereis an example:

int i=3;
int *iptr = & ;

The second line declares a pointer to an integer using the syntax ‘i nt *i ptr’. The**’ symbol
in avariable declaration indicates a pointer type. Thetype ‘i nt ’ in this declaration indicates that
thevariablei pt r isapointer to another variablethat isof ‘i nt ' type.

Simply put, we declarethat i pt r will contain the address of an integer variable.

The declaration is completed by initializing i pt r with the quantity ‘& ’. The ampersand ‘&'’ is
known as the address-of operator (see Table 2 on page 28). Once again, every variable in C occu-
pies some memory and this memory resides at a certain address. This address can be obtained
with the address-of operator.

In our example, assume that the variablei representsthe value 3 stored at location 0x1000. Then,
thevariablei pt r hasthe value 0x1000; the variablei has the address 0x1000. What is the
address of the variablei pt r ? We haven’t bothered to determineit, but we could always obtain it
using the address-of operator: ‘& pt r’. Thiswould give us a pointer to apointer to an integer, of
type‘i nt **’,

After executing the following code:

*iptr =5

33

The C Cheat Sheet Revision 1.0 September 5, 2000

(read as ‘ set the contents of memory whose addressis storedini pt r to5') we have done the
same thing as:

i = 5;

In the above example, the **’ operator isthe pointer dereference operator (see Table 2 on
page 28), also known as the contents-of operator. It may be helpful to think of this operator asthe
inverseof ‘&'.

Pointers are useful for very many things. Asasimple use of pointers, consider the problem of
returning more than one value from a function. Suppose we wanted to compute both the sum-of-
sguares and sum-of-cubes of a set of numbers. It would be a shame to place these two computa-
tions in separate functions as we would be re-computing many quantities, leading to slower code.
It would be more efficient to have a single function that returned both quantities. But how? One
option isto declare a structure type to hold the result and return the structure. A more efficient
way is asfollows:

doubl e suns(doubl e val ues[], int howvany, double *suntf Cubes) {
doubl e suntX Squar es;
int i;

*sumOf Cubes = 0; // Dereference pointer to return value #2
sumOf Squares = 0; // Initialize return value #1
for (i=0; i < howMany; i++) {

doubl e tenp = values[i]*values[i];

sumof Squar es += tenp;
*sunmOf Cubes += tenp*val ues[i];

}

return sumcf Squar es;

}

Note that we are indeed returning two values, one in the conventional way (sumf Squar es)
and another viaa pointer. Here is how we may call this function:

doubl e testcases[5] = {1.0, 2.0, 3.0, 4.0, 5.0};
doubl e squares, cubes;
squares = suns(testcases, 5, &cubes);

Thethird parameter to the suns functionisapointer toadoubl e. Thisquantity must point to an
existing doubl e variable where we would like our sum-of-cubes result to go.

One problem with pointersisthat small programming errors lead to big run-time errors. Imagine
if we had written the following line in error, forgetting that suntOf Cubes was a pointer:

sumf Cubes += tenp*val ues[i]; /1 Should be **sunf Cubes’

This would modify the address stored in suntf Cubes, not the dereferenced quantity. Worse,
imagine if we had effected the same mistake at the initialization line:

34

The C Cheat Sheet Revision 1.0 September 5, 2000

sunf Cubes = 0; /1 Intending to wite ‘*sunOf Cubes = 0;’

Thiswill surely lead to a program crash later in the program as attempting to dereference the
address O will wreak havoc. And whereas the first type of error will at least draw a compiler error
(‘!llegal use of floating point’, since it makes no sense to increment a pointer by areal number)
the second error is perfectly legal C. Not only will it lead to arun-time error but the actual error is
downstream, i.e,, it isa secondary effect and may occur very much farther in the program where it
isvery difficult to trace the root cause.

The moral: pointers are merciless. Simple errors in programming lead to big errorsin the pro-
gram. Experience and discipline in programming are the best defense.

A suggestion isto aways use a pointer variable' s name to indicate it is a pointer. For example,
declaring the sums function as:

doubl e suns(doubl e val ues[], int howvany, double *suntf CubesPtr)

reminds us whenever we use the variable that it truly is a pointer.

Another suggestion is to be a defensive programmer and check all function parameters prior to
using them. For example:

#i ncl ude <stdlib. h> /1 Defines exit() function

doubl e suns(doubl e val ues[], int howMany, double *sunf CubesPtr) {
doubl e suntX Squar es;
int i;

i f (sumOf CubesPtr == 0) { /1 How did that happen?
printf(“Woa therel\n”);
exit(1l);

Null pointers (i.e., pointers with value 0) are a very common source of errors and catching them
early can save alot of time in debugging.’

A very common use of pointersisin representing strings, as discussed in Section 6.4 below.

Only afew operators can be applied to pointers. For example, it makes no sense to try to multiply
or divide pointers. It is very common, however, to add or subtract quantities to pointers, or even
add and subtract pointers from each other. A very interesting behavior in C isthat adding an inte-
ger to apointer adds a multiple of the pointer type, not the integer itself. For example:

char *charPptr; /1l Points to 1-byte quantities
int *intPtr; /1 Points to 4-byte quantities

1. For advanced programmers, investigate theassert function in the standard C library. This can be a
very effective debugging aid.

35

The C Cheat Sheet Revision 1.0 September 5, 2000

doubl e *doubl ePtr; /1l Points to 8-byte quantities

char Pt r ++; /1 charPtr is now higher by 1 address

i nt Ptr++; /1 intPtr is now higher by 4 addresses
doubl ePt r ++; /1 doubl ePtr is now higher by 8 addresses

While perhaps counterintuitive at first, this behavior is very useful for allowing pointersto “step
through” arrays. For example, this function sets al the elements of a passed array to O:

void setToO(int arr[], int N) {
int i;
int *iptr;
for (i=0, iptr=&arr[0]; i < N i++, iptr++) {
*iptr = 0;
}
}

There are better ways to do this (seethe nenset function in the standard C library) but this
exampleillustrates the point. Incrementing i pt r by 1 doesnot add 1 to the addressini ptr, it
adds whatever the size of an ‘i nt ’ is, thus advancing from one element of ar r to the next.

Note that pointers can also be used to reference structure variables. For example:

struct pixel {
int x,vy,z;
I3
struct pixel aPixel;
struct pixel *pixelPtr;

pi xel Ptr = &aPi xel ;

There are two ways to access the members of a structure pointed to by a pointer variable. We can
dereference the pointer and use the membership operator ‘. ’ as before, or use the more compact
pointer membership operator ‘- >’. For example, the following expressions are equival ent:

(*pixel Ptr).y;
pi xel Ptr->y;

The form of the second expression is preferred for legibility.

6.4 Strings

In C, strings are simply arrays of char type that end with a0 byte. Strings are not objects, asin
Java. Most commonly, however, strings are referred to according to the address of the first char-
acter in the array, thus invoking the concept of pointers.

Hereisasimpleillustration of string usage in C. This program fills in each character of astring,
one character at atime, then prints the whole string.

#i ncl ude <stdio. h>

36

The C Cheat Sheet Revision 1.0 September 5, 2000

void mai n(void) {

char hello[8]; // ‘hello is an 8-byte string
hel | o[0] ‘H;
hel | o[1]
hel | o[2]
hel | o 3]
hel | of 4]
hel | o[5]
hel | o 6]
hel | o[7] 0;

printf(“%”, hello);

ooz

s -

}

We make the following observations:

» Constants of type char may be written in single quotes. For example, the constant
“H isequivaent to writing the constant 0x48. Only one character may appear
between the single quotes, with the exception of escape sequences (like ‘\ n’ that indi-
cates the end-of-line character.

* Thelast element of thechar array must be O in order for the array to be properly
treated as a string. Omitting this 0 element (referred to as the null byte of the string)
will lead to incorrect behavior and possibly program crashes. Remember to always
declare character strings with one extra character to hold the null byte.

* A string in Cis nothing more than an array of char type. Note that not all arrays of
char typeneed beinterpreted as strings. An array of char type can be used to hold a
set of 8-bit values that do not have atextual interpretation.

6.4.1 String Pointers

Takealook at thepri nt f statement in the above example again. It uses the name of the array
variable hel | o but without any square brackets. What does this mean?

In C, writing the name of an array without square brackets is equivalent to writing the address of
the array’ sfirst element. Thus,

hello == & (hello[0])

istrue. Weindicated to pri nt f the string we wanted to print by giving the address of the first
character. We could also have written:

printf(“9%”, &hello[0]);

Thisisavery important concept. In C, strings are passed from one function to another using the
address of the first character, not as the whole array.

Passing the entire array would be very wasteful. Simply passing the address of the array is much
more efficient and also allows the array to be modified by any function in-place, rather than

37

The C Cheat Sheet Revision 1.0 September 5, 2000

returning a modified copy of the array. Note that this concept appliesto any C array, not just
strings: arrays are passed from one function to another using the address of the first element.

The fact that we are passing the address of a string means we are actually passing a pointer. What
isthetype of the expression ‘& hel | o[0] '?Itisan addressof achar soitisa pointer-to-
char type, or ‘char *’. For example:

char *helloPtr = & hello[0];
printf(“%”, helloPtr);

isalso correct, although redundant since hel | oPt r isexactly equivalent to hel | o (without
sguare brackets).

Let’slook at another example that demonstrates the use of string pointers. This program prints
each one of the characters of the string “Hello world!” on a separate line.

#i ncl ude <stdio. h>

void mai n(void) {
const char *helloPtr = “Hello world!\n";
while (*helloPtr '=0) {
printf(“%\n”, *helloPtr);
hel | oPt r ++;

}

There are some new concepts in this example. First, consider the line:

const char *helloPtr = “Hello world!\n";

We are declaring the variable hel | oPt r as storing the address of a character. Thus, we can use
thisvariableto point to astring (array of characters). In thisdeclaration we are also initializing the
contents of this variable to point to the string “Hel | o wor | d! \ n”. Thisstring is a character
array that will be stored in memory somewhere and whose address (of the first character) will be
storedinhel | oPtr.

Finally, declaring hel | oPtr asa‘const char *’ typeindicatesthat thisisapointer to
memory that should not be changed (i.e., it isapointer to constant characters, not writable charac-
ters). The compiler would generate an error if you attempted to modify memory through the

hel | oPt r pointer.

NOTE: Writing astring in double-quotes automatically sets aside space for this string in memory.
The compiler also automatically includes the null byte at the end of the string. Thus, the string
“ABC” isa4-character string. There are three characters plus a null byte. Also, the string in dou-
ble-quotesisavalid C expression. The type of thisexpressionis‘const char *’.

Now let’slook at the first statement in the whi | e loop:

while (*helloPtr = 0) {

38

The C Cheat Sheet Revision 1.0 September 5, 2000

In plain English, this expression tests to make sure the pointer hel | oPt r isnot the address of a
character with value 0, i.e., the null byte of astring. That is, we are testing to see if we're at the
end of the string. The expression ** hel | oPt r’ dereferences this pointer to look at the actual
character that the pointer is pointing to.

The next line:
printf(“%\n”, *helloPtr);

causespri nt f to print asingle character (thisiswhat the % format specifier does) followed by
anewline. The character to printis‘*hel | oPt r’, that is, the actual character that the pointer is
pointing to.

Notethat hel | oPt r isof type‘const char *’. Dereferencing this pointer with the expres-
son‘*hel | oPt r’ givesusavaueof type‘const char’,i.e, asingle character.

Finally, the statement:
hel | oPt r ++;

advances the pointer to point to the next character in the string. The loop terminates once this
pointer pointsto the null byte (i.e., end of the string).

6.4.2 String Operations

Remember, strings are not objects and do not have methods. We operate on strings by calling
functionsthat expect string pointers as arguments. Here, for example, isafunction that prints each
character of astring on a separate line.

#i ncl ude <string. h>

voi d printChars(const char *str) {
int i;
for (i=0; i < strlen(str); i++) {
printf(“%\n”, str[i]);

}
}

First, we must include the st r i ng. h include file to declare the external functions that operate
on strings (these functions are in the standard C library).

The parameter of the pr i nt Char s function is apointer to astring, and we use theconst key-
word to indicate that we will not be modifying this string in the function.

Inthef or statement, note that we are callingthest r | en() function and passing the string

pointer parameter to it. This function computes the length of a string, i.e., how many characters
arein the string before the null byte.

39

The C Cheat Sheet Revision 1.0 September 5, 2000

Finally,inthepri nt f statement we are accessing each character of the string individually using
the array dereference operator (square brackets). It may be confusing to treat a pointer variable as
an array, but recall that they are virtually equivalent. In C, it is true that:

str[i] == *(str +i);

Thus, just think of the array dereference as first advancing the pointer forward by the given num-
ber of elements, then looking at the contents of memory at that address.

6.5 Enumer ated Types
The enumkeyword introduces an enumerated type. Here is an example:

enum direction {
North, South, East, West

}s

We can now declare avariable of this type:

enum direction currentDirection;

This variable can only take on one of the four constants listed in the type declaration: Nor t h,
Sout h, East , and West . The compiler automatically creates these constants and assigns inte-
gersto them, beginning with ‘Nor t h=0" and ending with ‘st =3’.

Strictly speaking, enumerated types are not necessary. We could have mimicked the above with
preprocessor constants and a variable of typei nt :

#define North 0
#defi ne South 1
#defi ne East 2
#defi ne West 3

int currentDirection;

The enumerated type, however, is more type-safe. For example, the statement:
currentDirection = 5;

would lead to a compile-time error (asit should) in the first example but not in the second. Using
the enumerated type also prevents programming errors that arise from mis-typing the #def i ne
statements (suppose we mistakenly used the same number for two constants).

6.6 Bitfields

Bitfields can be very useful for accessing a set of bitsin an integer rather than the whole integer
itself. Most often, bitfields are used within structures, like this:

struct init_register {
i nt regbase: 4; /1 Lower 4 bits
int ranbase: 4; /1 Next 4 bits

40

The C Cheat Sheet Revision 1.0 September 5, 2000

} iReg;

Writing to each structure member only modifies 4 bits of thei Reg structure variable. For exam-
ple:

i Reg. regbase
i Reg. ranbase

0xC,
0x1;

These two statements together modify 8 bits of data, but only 4 bits at atime.

Bitfields can be very useful for mapping the structure of a hardware register to C variables. The
example above mapped out the two 4-bit fields of the 6BHC11 INIT hardware register.

6.7 Unions

Unions are very similar to structures in appearance but behave quite differently. Each member of
a union occupies the same memory space as the other members. This alows the union to act asa
sort of adapter to treat the same memory contents as two (or more) different types. For example,
suppose we sometimes wanted to access a 16-bit hardware register asa single 16-bit shor t
guantity and sometimes as two 8-bit char quantities. We could use the following declaration:

union tinmerReg {
short tinmer;
struct tinerBytes {
char tinerlLQ
char tinerH;
b
} theTiner;

The first member of thisunion isthe 16-bit quantity t i mer . The second member of this union,
occupying the same memory ast i mer , isthe 16-bit structure named t i ner Byt es, which has
two 8-bit members, t i mer LOandt i mer HI . We now have two ways of writing to this hardware
register:

theTinmer.tinmer = 0x1234; /1 One way to do it
theTimer.tinmerBytes.tinerH 0x12; // Another way to do it
theTimer.tinerBytes.tinerLO = 0x34;

Note that this sort of operation is not portable across hardware architectures as it depends upon
word sizes and the endianness of the platform.

7.0 Advanced Programming Concepts

7.1 Standard 1/0O

We have made extensive use of the function pr i nt f throughout our examples so far. This func-
tion belongs to a class of functions known as the standard I/O component (or st di 0) of the stan-
dard Clibrary. All of these functions operate on I/O streams declared astype‘FI LE *’ (thetype
FlI LE, dong with the st di o functions, are declared in the system header filest di 0. h).

41

The C Cheat Sheet Revision 1.0 September 5, 2000

In this section, we explore some of the remaining standard 1/0 functions along with example
usage.

7.1.1 Opening Files

Thef open function can be used to open afile on disk and prepare it for reading or writing. This
function takes a string that indicates the file name and returns a quantity of type‘FI LE *’ that
can be used in other standard I/O functions. Here is an example:

#i ncl ude <stdi 0. h>

void mai n(void) {
FILE *file;

file = fopen(“c:\\junk.txt”, “wt”);
fprintf(file, “This is junk\n”);
fclose(file);

}

The first parameter to f open isthe name of afile. It may or may not include path components
(e.g., “c\\"). If not, the file is assumed to be in the current working directory. Note that the dou-
ble-backdlash in the file name is used to achieve an actual single-backslash since backslashes
introduce escape sequences (like\ n) in C strings. On Unix-like systems, the regular slash */" is
the path separator (and in fact, this should work on Windows systems as well).

The second parameter to f open tells this function what we want to do with the file: open it for
reading, writing, both reading and writing, etc. as well as whether the fileisabinary file (‘b’ suf-
fix inthe string) or atext file (‘t’ suffix in the string). The parameter “wt ” indicates that we want
to open thefile for writing (overwriting any existing file by the given name) and it will be atext
file.

Thef open function either returnsavalid file pointer or it returns O to indicate an error condition.
All file pointers created using f open must be closed using f cl ose, asin the example above,
when no longer needed.

7.1.2 Writing to File Pointers

Once atext file has been opened for writing using f open, data can be written to the file using the
f printf function, asin the above example. Notethat f pri nt f looks very much like the

pri nt f function we have been using, except it takes an extra parameter at the front of the
parameter list: the file pointer. The format string and remaining parametersof f pri nt f are
described in detail in any C reference text or help file.

Single characters may be written to fileswith f pri nt f and the %€ format specifier, or with the
f put ¢ function (consult areference for usage information).

Binary filesarewritten using f wr i t e instead of f pri nt f . Consult a C reference text for the
usage of this function.

42

The C Cheat Sheet Revision 1.0 September 5, 2000

7.1.3 Reading from File Pointers

There are several ways of reading datafrom atext file. Thef get s function reads one text line of
thefileat atime. Thef scanf function attemptsto read one data value from the text file. We
illustrate both of these methods with examples below.

First, let us examine aprogram that counts the number of linesin atext file that begin with the ‘#
character.

#i ncl ude <stdi 0. h>
#i ncl ude <stdlib. h>

void mai n(void) {
i nt numLi nes = O;
char |ineBuffer[80];
FILE *file = fopen(“c:\\inputfile.txt”, “rt”);

if (file==0) {
printf(“Cannot open input file\n”);
exit(1l);

}

while (fgets(lineBuffer, 80, file)) {
if (lineBuffer[0] == ‘#) {

numLi nes++;

}

}
printf(“%l |ines began with # n”, nunlines);

fclose(file);

}

Thef get s function reads one text line from the file and stores it in the string pointed to by its
first argument. Space for the string must have been set aside previoudly, either with a character
array (asin the example) or via dynamic memory allocation (see Section 7.2). The maximum
number of charactersto read is given by the second argument and prevents the character array
from overflowing due to long lines in the input file. When the end of the fileisreached, f get s
returns O and the whi | e loop terminates.

Now, let us examine a program that usesthe f scanf function to read data values rather than
entire lines. This program assumes that the input file contains some number of floating-point val-
ues written as text numbers, e.g., “2.345”. All of the numbers are separated by whitespace (i.e.,
either spaces, tabs, or newlines). For each number, the program prints its value to the screen.

#i ncl ude <stdio. h>

void mai n(void) {
FILE *file;
doubl e val ue;

file = fopen(“infile.txt”, “rt”);

while (fscanf(file, “%f”, &alue) == 1) {
printf(“Value: %\n”, value);

43

The C Cheat Sheet Revision 1.0 September 5, 2000

}
if (! feof(file)) {

printf(“ERROR. Ml forned floating-point value\n”);
}

}

The format of the fscanf functionis;

fscanf (FILE *, “FormatString”, &varl, &var2, ...);

The first parameter is afile pointer, as returned by f open. The second parameter is aformat
string (see areference manual or help file; thisformat string isinterpreted in essentially the same
way astheonefor pri nt f). The remaining parameters are pointers to the variables that will
hold the valuesto read. Note that in the example above we used the address-of operator ‘& to pro-
vide a pointer to the variable ‘val ue’ which will hold the floating-point quantity read from the
file.

Thef scanf function has areturn value: the number of input values successfully interpreted
according to the format string. In our example, there was one format specifier in the string, indi-
cating we were expecting asingle value at atime. The return value should be 1, then, to indicate
that we converted some text in the file to afloating point number. If the return valueislessthan 1,
it indicates there was an error and we should not trust the contents of the ‘val ue’ variable.

There are two primary ways in which thef scanf function could fail. First, we may have
reached the end of thefile. Inthiscase, thef eof function (see example above) can be used to test
for this case, which isnot an error as it simply lets us know we' ve run out of data. Second, we
may encounter something in the input file which cannot be converted to areal number. For exam-
ple, encountering a string of letters would cause f scanf to fail, sinceit has been instructed to
expect afloating-point number. In the example above, if f scanf failsto return 1 and we are not
at the end of the file, we assume that the input file contained something other than areal number
at the point of failure.

Single characters may be read from afile using the f get ¢ function (consult areference for
details).

Binary filesareread using the f r ead function. Consult a C reference text or help file for the
usage of this function.

714 Thest di n/st dout /st derr Streams

There are three standard I/O streams that have already been opened by the time a program runs.
Thefirst, caled st di n, isatext file pointer that can be used for reading (i.e., f scanf , f get s,
etc.) It represents the user’ s keyboard, not atrue “file”. Thus, characterstyped at the keyboard can
be read by calling standard 1/0O input functions on the file pointer st di n. For example, hereisa
subroutine that expects the user to enter an integer at the keyboard:

#i ncl ude <stdio. h>

int getlnteger(void) {

The C Cheat Sheet Revision 1.0 September 5, 2000

i nt val ue;

while (1) {
printf(“Enter an integer: “);
fflush(stdin);
if (fscanf(stdin, “9%”, &alue) == 1) {
return val ue;

}

printf(“That was not a valid integer. Try again.\n");

}

The purpose of thecall tof f | ush isto “flush” the stream, i.e., remove anything that may bein
it. Thiswill ensure that there are no characters left hanging around from the user’s previous typ-

ing.

Similarly, st dout isatext file pointer that can be used for writing to the user’ s console. Y ou can
usef pri nt f towritethefile pointer st dout . Note that thisis equivalent to using pr i nt f
without the file pointer argument. That is, the following are equivalent:

fprintf(stdout,);
printf(.......);

Finally, st der r issimilar to st dout but it isgenerally used for reporting errors, whereas
st dout isused for printing non-error information (data, etc.)

7.2 Dynamic Memory Allocation

It is often the case that the amount of storage required for avariable is not known at compile time.
For example, consider a program that must sort afile containing real numbers, but it is not known
how many numbersthere are in thefile. Thefirst linein the file, however, could be an integer
indicating how many numbersto expect. Still, it is not possible to declare an array that can be
guaranteed to hold as many real numbers as required without imposing an arbitrary limitation on
the program.

The solution to these types of situations is to first determine how many elementsin the array are
needed (i.e., how much storage is required) then allocate space for the array based upon this num-
ber. This can be accomplished using pointers and the mal | oc set of functionsin the standard C
library. These functions are declared by including the<st dl i b. h> system include file.Hereis
an example that reads some number of real numbers from afile where the file' sfirst line contains
the number of real numbers that follow.

#i ncl ude <stdi 0. h>
#i ncl ude <stdlib. h>

void mai n(void) {
doubl e *reals; /1 Array size not yet known
i nt nunmReal s; /1 Number of nunbers to read
int i;

FILE *file = fopen(“nunbers”, “rt”);

45

The C Cheat Sheet Revision 1.0 September 5, 2000

if (file == 0) { errorHandling(); }
if (fscanf(file, “%l\n”, &uunReals) != 1) { errorHandling(); }

reals = (double *)nmall oc(nunReal s*si zeof (doubl e));
if (reals == 0) { errorHandling(); }

for (i=0; i < nunReals; i++) {
if (fscanf(file, “%", &eals[i]) '=1) {
error Handl i ng();
}

}

fclose(file);
/1 Do sonething useful with reals array

free(reals);

}

We declared an array of unknown size by writing ‘doubl e *r eal s’. Thus, we are ssimply
declaring a pointer variable, not pointing to anything at the moment. Once we know how many
real numbers we need space for, we can dynamically allocate that space using the mal | oc func-
tion. This function takes as its parameter some number of bytes and returns a pointer to the allo-
cated memory.

The fact that mal | oc needs to know how many bytes we need to allocate means we must pass it
the expression ‘nunReal s*si zeof (doubl e) ’. Thisexpression multiplies the number of
doubl e guantities we need by the number of bytes occupied by adoubl e. The C operator

si zeof () returnsthe number of bytes occupied by any type, including user-defined types (see

Section 7.4)%.

Thereturntypeof mal | oc is‘voi d *’, meaning it isa pointer to memory of unknown type.
This must then be cast to the appropriate type using the cast operator, as shown above. The mal -
| oc function returns O if it was unable to allocate the requested memory. This condition should
always be checked, asin the example.

After asuccessful call tomal | oc, ther eal s pointer can now be treated as an array. Thefirst
elementread inisr eal s[0] ,thenreal s[1], etc. al theway uptor eal s[nunReal s- 1] .

Memory allocated with mal | oc must be returned to the operating system using thef r ee func-
tion. This function takes as its parameter a pointer previously allocated using mal | oc.

The differences between dynamic memory allocation in C and Java are great. Allocating a

dynamic array of realsin Javaisachieved smply by ‘'r eal s = new doubl e[nunReal s] .
Furthermore, thereisno need to call af r ee function as memory is automatically reclaimed (i.e.,
garbage collected) when it isno longer used. The low-level dynamic memory allocation approach

1. Notethat si zeof () istruly an operator, not afunction call. It isan operator that is evaluated at compile
time, not run time.

46

The C Cheat Sheet Revision 1.0 September 5, 2000

in C has been the cause of innumerable program errors. Calling f r ee with the same pointer
twice, for example, is an excellent way to crash a program.

The approach in Java makes life much simpler for the programmer. It is not without cost, how-
ever. Once again, it is atradeoff between control over the underlying hardware versus simplicity.
In C, alocated memory isfreed only when the program so dictates. In Java, a garbage collector
thread runs “every so often” to clean up memory. In an environment where timing is important, it
may be quite inappropriate for this thread to run at certain times. More things happen behind the
scenes in Java, where the programmer has less control, while C gives the programmer nearly
absolute control over the runtime environment.

There are two variants of mal | oc that may also be useful. The cal | oc function also allocates
memory but it ensures that the memory is zeroed-out. Ther eal | oc function attemptsto take a
pointer to previously-allocated memory and resize the memory block (either bigger or smaller).

7.3 Memory Manipulation

A set of functionsin the standard C library known as the buffer manipulation functions allow very
low-level control over acomputer’s memory. These functions are declared by including the sys-
tem header file<st r i ng. h>. For example, hereis an example that fills the contents of memory
locations 0x100 through Ox1FF with the constant Ox55:

nmenset ((void *)0x100, 0x55, 256);

Thefirst parameter to nenset isan address (type‘voi d *’) of unspecified type. The second
parameter is the byte to use to fill the block of memory. The third parameter is the number of
bytes to write beginning at the given address.

This low-level memory interface can also be used to copy memory from one location to another.
Thisis necessary, for example, when attempting to assign one structure variable to another. Sup-
pose we have the following declarations:

struct {
int x,vy,z;
} pixell, pixel?2;
C does not support direct assignment of one structure variable to another:

pi xel 2 = pixel1l; // |LLEGAL!

We can, however, achieve the same effect by simply copying the contents of memory from one
variable to the other:

mencpy(&pi xel 2, &pi xel 1, si zeof (pi xel 2)); /1 LEGAL

The first parameter to mentpy isan address (type ‘voi d *’) indicating the destination of the
copy operation. The second parameter is an address indicating the source of the copy operation.

47

The C Cheat Sheet Revision 1.0 September 5, 2000

The third parameter is the number of bytes to copy. Once again we usethe si zeof operator to
return the number of bytes occupied by avariable (or type).

Note that the memory functions operate very similarly to string functions (e.g., compare the oper-
ation of mentpy andst r cpy). Thedifferenceisthat the string functions all expect to operate on
null-terminated strings. The memory functions operate on blocks of memory that are not neces-
sarily null-terminated (and may, in fact, contain multiple null bytes) and the length of the memory
block must be specified.

A final caveat: the mentpy function does not work when the source and destination ranges over-
lap. In this case, the mermov e function (same interface as mentpy but generaly alittle slower)
must be used. For example, here is afunction that removes the first element of an array and shifts
the remaining elements down to take its place.

#i ncl ude <string. h>

voi d renmoveHead(void *array, int nunkEl ements, int el enentSize) {
menmove(array,
(char *)array+el emrent Si ze,
(nunkEl ement s- 1) *el enent Si ze) ;

}

The source of the memory movement is the second element of the array, i.e., the starting address
of the array plus the number of bytesin 1 element. Note the expression:

(char *)array + el enentSize

We cannot add integersto voi d pointers (since the size of the array type is unknown). We must
cast the pointer to type‘char *’ sothat adding el enment Si ze to it increments the pointer by
this many bytes. Recall that the expression ‘ar r ay+N isequivaent to ‘&ar r ay[N] ’, but only
when the type of the array isknown (i.e., array isnota‘voi d *').

7.4 Declaring New Types

C has primitive support for declaring new types. Thet ypedef keyword can be used to attach a
name to an existing type, which may make the program more readable. The basic usage of a
t ypedef declarationis:

t ypedef known_type new nane;

For example, here is an attempt at improving portability by using new type names for integers
with aknown bit width.

#i fdef | NTS_ARE_SHORT

typedef int I nt 16; /1 16-bit integers
t ypedef |ong I nt 32; /1 32-bit integers
#el se // I NTS_ARE _LONG

t ypedef short I nt 16; /1 16-bit integers
t ypedef int I nt 32; /1 32-bit integers

48

The C Cheat Sheet Revision 1.0 September 5, 2000

#endi f

Using thetypel nt 16, for example, to declare a variable guarantees that this variable occupies
16 hits, regardless of the underlying hardware platform. This assumes that the constant
INTS_ARE_SHORT has been defined (using #def i ne) on platforms with 16-bit integers and
left undefined on 32-bit platforms.

Another common use of t ypedef isto name structures so that thest r uct keyword need not
be a part of the type. For example:

typedef struct |oc3d {
int x,vy,z;
} Locati on3D;

The known type in this case is the structure type while the new name for thistypeis
Locat i on3D. Thus, the following two declarations are identical but the second is more legible:

struct |oc3d aPi xel ;
Locati on3D aPi xel ;

Thefinal usefor t ypedef isto build up acomplex type out of smpler types. The C language
supports extremely complicated types (e.g., arrays of pointersto arrays of arrays of...) but these
types can be very difficult to declare properly. Suppose we wanted to declare a pointer to an array
of pointersto 5-byte integer arrays. We can build it up one type at atime:

t ypedef char FiveByteArray[5]; /1 A 5-byte array type
typedef FiveByteArray *FiveByteArrayPtr; // Pointer to 5-byte arrays
typedef FiveByteArrayPtr *FiveByteArrayPtrPtr;
/1 Array of pointers to 5-byte arrays
t ypedef FiveByteArrayPtrPtr *Final Type;

7.5 Pointer sto Functions

An extension of the concept of thet ypedef keyword as explained in Section 7.4 is the defini-
tion of functions astypes. In C, functions are first-class objects in that they can be stored in vari-
ables, passed as parameters, etc. Why would you want to do this?

A concept known as generic programming attempts to separate data structures from the functions
that operate on them. For example, finding the smallest entry in an array, or alinked list, or atree,
etc. representsthree different functions that implement essentially the same algorithm: check for a
new minimum, get the next value in the data structure, and repeat. The fundamental algorithm
does not depend upon whether the datais stored as an array, or alinked list, or atree. That is, the
data structure is separate from the algorithm, and the same algorithm, once developed and tested,
should be reusable on awide variety of data structures.

The C++ language implements generic programming by its use of the Standard Template Library,
or STL. In C, we can use pointersto functionsto try and implement some sort of generic program-
ming. For example, one of the functionsin the standard C library, gsor t , implements a quicksort
sorting algorithm that works on awide variety of data structures (aslong as they are stored as an

49

The C Cheat Sheet Revision 1.0 September 5, 2000

array). Thisfunction requires several parameters. a pointer to where the data to be sorted resides,
the size of each element in the array, the number of entriesin the array, and the final element, a
pointer to a compare function.

It isin the compare function (written by the user) that the specific nature of the data structure is
reflected. Thisfunction is passed two pointers, each pointing to one element of the data structure.
The compare function must return -1 if thefirst element is*lessthan” the second (in some sense),
0if they areequal, and 1 if thefirst element is“greater than” the second. Theqsort function,
then, uses this return value to effect the algorithm; the inner details of the data structure are
abstracted out.

We can declare the type of this compare function compactly as:
typedef int (*ConpareFunction)(void *, void *);

This declares the new type Conpar eFunct i on which isapointer to afunction taking two
parameters (both voi d pointers) and returning an integer. We can now select from among multi-
ple compare functions:

int funcl(void *pl, void *p2) {

}
int func2(void *pl, void *p2) {

}
Conpar eFuncti on whi chFunc = funcl;

Note that simply writing the name of afunction (e.g., ‘f uncl’) isan expression of type ‘ pointer
to function’. We can then invoke the function as follows:

int return_val ue;
return_value = (*whi chFunc) (pl, p2);

Admittedly, thisis highly esoteric and unlikely to be useful to new students of the language. We
hope, however, that the power of C is becoming apparent despite its starkness and often-confus-
ing pointer concept.

7.6 Command-Line Parameters
The prototype of the entry point of a C program is written as:

int main(int argc, char *argv[])
Let us consider how to interpret the parameters of the mai n function.

The first parameter ar gc issimple: it simply indicates the number of command-line parameters.
If the compiled program is executed as follows:

50

The C Cheat Sheet Revision 1.0 September 5, 2000

nyprogram-o stuff file

then ar gc would be 4. The name of the program itself (i.e., mypr ogr am isthefirst parameter
of the argument list. Thus, a C program can discover the name by which it wasinvoked (atrick
used by sneaky programmers to modify a program’s behavior smply by creating several links of
different names to the same executable).

The remaining parameters in the example above are the strings ‘- o', ‘st uf f ", and ‘fi | e’.
These strings, aswell asthefirst parameter (the program name) ‘nypr ogr ami areall availablein
the parameter ar gv.

Thear gv parameter isan array of string pointers. For example, ar gv[0] isof type‘char *'.
We recognize this as (possibly) a pointer to the first character of a null-terminated string. Indeed,
ar gv[0] isapointer to the string that is the first parameter (the program name). The next ele-
ment inthe array, ar gv[1] isalso of type‘char *’ and describes another string: the second
parameter (‘- 0’ in the example above).

Thus, we see that the ar gv array extends from ar gv[O] throughar gv[ar gc- 1], with each
entry being a pointer to a null-terminated string. Here is the example program from page 16 that
prints each command line parameter passed to it:

#i ncl ude <stdio. h>

void main(int argc, char *argv[]) {
int i;

for (i=0; i < argc; i=i+1) {
printf(“Argurment % is %\n", i, argv[i]);
}
}

Java uses a similar prototype for the main function except that the ar gv parameter is an array of
String objects. Since array sizes can be obtained in Javausing the ar r ay. | engt h method, the
ar gc parameter is not required.

8.0 Multi-File Programs

It is possible to spread a C program across multiple source files. The compiler, however, only
compiles onefile at atime. Any functions declared in one source file but used in another must
somehow make themselves known to the latter. In this section we discuss the standard techniques
of splitting a program’ s functions and variables across multiple files.

8.1 Basic Concepts
Let us extend the example presented in Section 5.1 on evaluating a polynomial. Suppose we

wanted to define afunction pol y4 that could evaluate any 4" order polynomial with arbitrary
coefficients. Wefeel that thisfunction is separate enough from the goings-on of the main program
that we should put it in its own file. We will implement the following:

51

The C Cheat Sheet Revision 1.0 September 5, 2000

» A function called pol y4coef f that allowsthe caller to set the coefficients of the
polynomial. Presumably, the coefficients will be reused many times so it is more effi-
cient to set them once rather than passing them every time.

» Thefunction pol y4 to evaluate the polynomia with the coefficients set by
pol y4coeff.

* Avariablepol y4cal | s indicating how many timeswe' ve called pol y4. This may
be useful in profiling our code (i.e., estimating the time spent in various sections of the
program).

Here is one possible implementation of the above, all as part of the file pol y4. c:

int polydcalls = 0;
static double C1, C2, C3, C4; /1 The coefficients

voi d pol y4coef f (doubl e ¢c1, double c2, double c3, double c4) {

Cl = c1,;
C2 = c2;
C3 = c3;
4 = ¢4,

}

doubl e pol y4(double x) {
doubl e val;

pol ydcal | s++;

val = Cl*x + C2;
val = val*x + C3;
val = val*x + C4;
return val;

}

What may we learn from this example?

1.

52

Thevariable pol y4cal | s isaglobal variable. We need its value to persist across multiple
callsto pol y4. We also need this variable to be accessible outside of pol y4 since other
functions may want to know how many times pol y4 has been called. This means we can’t
make pol y4cal | s astatic local variable (i.e., put it inside pol y4).

This global variable, then, isaform of communication between two (or more) files. The

pol y4. c file modifies this variable and other functionsin other files presumably inspect its
value. Thereis nothing preventing other functions from modifying pol y4cal | s, however,
which would lead to program errors. The principle of information hiding or encapsulation in
object oriented languages like C++ or Javaisintended to avoid these problems (we can also
doitin C using functions to hide the variable).

The C Cheat Sheet Revision 1.0 September 5, 2000

2. Theconstants C1, C2, C3, C4 are also global variables. We need these variables to persist
from the call to pol y4coef f until pol y4 iscalled. Note, however, that unlike
pol y4cal | s, these 4 constants are also declared with the st at i ¢ keyword.

Unfortunately, st at i ¢ here means something dlightly different than st at i ¢ applied to
local variables. A global variable declared st at i ¢ isnot accessible in functions outside the
file. Only the functions defined in the file pol y4. ¢ caninspect or modify these variables
(which is exactly what we want).

Asabrief summary of the st at i ¢ keyword, consider the following table that compares the
scope (i.e., where the variable is accessible) and persistence of avariable:

Table 3: Persistence and Scope of Global and L ocal Variables

Not

static static

Local Variables | ¢ Function scope | ¢ Function scope

* Persistent * Not persistent
Global Variables | « File scope * Program scope
* Persistent * Persistent

In summary, local variables always have function scope. The st at i ¢ keyword determines
whether or not they are persistent. Global variables are dways persistent. The st at i ¢ key-
word determines whether they have program scope (i.e., accessible anywhere) or file scope.

Finaly, thest at i ¢ keyword can aso be applied to functions. They behave the same as for
global variables, i.e., they prevent the function from being visible outside of the file. Presum-
ably, static functions are “helper” functions only intended for use within thefile.

Now let’s use our new functions. Consider the file named mai n. ¢ with the following contents:

#i ncl ude <stdi 0. h>

/1 Defined in poly4.c

extern int poly4dcalls;

extern voi d pol y4coeff(double cl1l, double c2, double c3, double c4);
ext ern doubl e pol y4(doubl e x);

void mai n(void) {
int i;

pol ydcoeff (4.0, -2.0, 1.0, 5.0);
for (i=-5; i<=5; i++) {
printf(“(%, %)\n", i, polyd(i));
}
printf(“We called poly4 % tines.\n”, polydcalls);

53

The C Cheat Sheet Revision 1.0 September 5, 2000

We can create the final program by compiling both files at the same time:

bcc32 -epol ydtest.exe main.c poly4d.c

Remember that any variable or function must be declared beforeit is used. Thisiswhy we had to
include the three ext er n linesin the mai n. ¢ file above. Note that an ext er n declaration of
the constants C1 through C4 was not included in mai n. c. These constants are private to

pol y4. c and are not visible outside that file (since they were declared as static global variables).

8.2 Include Filesas I nterfaces

We have encountered the main principles of encapsulation in the C language: data hiding using
file scope and function scope. The principles of modular program design require us to encapsul ate
a component of the program according to functions and variables that are visible and those that
are hidden, thus minimizing interdependencies (and errors) across the program design.

An effective way to do thisinvolves using include files to define amodul €' s externally visible
interface. The process works as follows:

» Thefunctions and global variables that should be visible outside of the file in which
they are declared represent this modul € sinterface. The interface is defined by several
ext er n statements placed in an include file.

» Thisincludefileisincluded (with the #i ncl ude directive) wherever another file
needs to reference the given modul€’ s interface.

+ Themodulein which the functions and variables are declared al so includes theinclude
file. Thisisn't strictly necessary but is avery good defense against mismatchesin the
source code and the include file (the compiler will flag the differences).

* Functions and global variables that are private to a module are not put in the include
fileand aredeclared st at i c.

For example, let us split our example program into three files now:
* Themai n. c file (same as before)
* Thepol y4. c file (same as before)

* Apol y4. hfile(al theext er n statements go here)

Hereisthe new pol y4. h file:

/1 Defined in poly4.c

extern int polyédcalls;

extern voi d pol yd4coeff(double cl1l, double c2, double c3, double c4);
ext ern doubl e pol y4(doubl e x);

Themai n. c fileis now smaller:

#i ncl ude <stdi 0. h>

J]

The C Cheat Sheet Revision 1.0 September 5, 2000

#i ncl ude “poly4.h”

void mai n(void) {

}

int i;

pol ydcoeff (4.0, -2.0, 1.0, 5.0);
for (i=-5; i<=5; i++) {
printf(“(%, %@)\n”, i, poly4(i));
}
printf(“We called poly4 % tines.\n”, polydcalls);

We have gained several benefits from this approach:

Any changesto the interface of pol y4. c arereflected in asinglefile, pol y4. h,
rather than having to modify all the other files that might have used it.

We can make changes to the implementation of pol y4. ¢ without changing the inter-
face. For example, we may want to implement the pol y4 function in assembly lan-
guage for maximum speed. This does not affect the interface whatsoever.

This approach to modularity and encapsulation is clearly less robust than that of classes, public/
private distinctions, and inheritance, all availablein Javaand C++. As programs become larger
and larger, the modularity mechanisms of C become unsatisfactory. Both C++ and Java are better
languages for very large programs due to their better support for modularity and encapsulation.

8.3 Object Filesand Linking

A complete program is created by linking together one or more object files. A single sourcefile
generates a corresponding object file, inwhich the‘. ¢’ extension isreplaced with ‘. obj ’ (or

‘. 0’ on Unix-type systems). For example, compiling ‘hel | 0. ¢’ (successfully) generates the

object file‘hel | 0. obj .

A separate program known as the linker pulls together one or more object files and stitches them
all together into a single executable file. The linker’ srole isto resolve external references. A
function (or variable) declared ext er n in one source file must eventually be found in an object
file. If not, the linker issues an “unresolved reference” error, meaning you probably forgot to write
certain functions. This error can also arise if functions or global variables are declared st at i ¢
by mistake, in which case the linker doesn’t “see” them (i.e., the have file scope, not program

scope).

For example, the polynomial evaluation example program shown in Section 8.2 comprises two
source files, mai n. ¢ and pol y4. c, which are compiled to create the object files mai n. obj
and pol y4. obj . Thelinker then examinesthe mai n. obj file and seesthat it expectsto use a
function named pol y4. Thisfunction, however, is not defined within themai n. obj file, thusis
an external reference. When the linker examines pol y4. obj , it finds the definition of pol y4,
which resolves this external reference. If all external references are resolved, linking is complete
and an executable file is generated.

55

3]

The C Cheat Sheet Revision 1.0 September 5, 2000

A set of object files that may be of use in awide variety of programs are often packaged into a
library. A library is simply acollection of pre-compiled object files. For example, suppose you
created several source files to support the evaluation of many types of polynomials. After compil-
ing all of these source filesto create object files, alibrarian program can package these object
filesinto asinglelibrary file, perhaps named pol y. | i b. Thisfile can then be distributed to any-
one that wishes to use your functions as part of alarger program.

C compilersinclude system libraries that can be used in the linking processfor your program. One
such library, the standard C library (briefly introduced in Section 9.0), contains the object code
for functionssuch aspri nt f . Linking your program with the standard C library “pullsin” the
pri nt f function from somewhere within the library and adds it to your executable program.

Thelinking processis similar to the importing of classesin a Java program. Whereas the | atter
occurs at run-time in aJava program, linking is a static process that must occur before you can run
your program. A variant of linking, known as dynamic linking, is similar to the Java approach in
that the required object files (packaged into dynamic link libraries, or DLL’sin Windows envi-
ronments) are not linked until the program runs. Creating programs that take advantage of
dynamic linking is an esoteric process, and it doesn’'t help that this processis very different on
Windows and Unix-type systems.

8.4 The Details of the Compilation Process

For single-file programs, the compilation processis conveniently hidden by adriver program that
orchestrates al of the compilation steps. preprocessing, compiling, assembly, and linking. As pro-
grams become larger and are split across multiple files and libraries, the details of these steps
become more important. For example, the BCC32 program is actually a driver program that
invokes the following sub-programs:

The C preprocessor (built-in to BCC32 or runable externally as CPP32.EXE)
The C compiler (built-in to BCC32)

The assembler (built-into BCC32, use ‘- S’ option to view assembly source)
The linker (the ILINK32.EXE program)

The preprocessor (described briefly in Section 1.4) removes comments, handles#i ncl ude
directives, etc. and leaves another file as input to the compiler.

The compiler takes the output of the preprocessor and generates low-level assembly language
code in yet another text file.

The assembler takes this text file and generates object code (see Section 8.3) which is simply sev-
eral numbers that represent instructions for the computer’ s processor.

Finally, the linker brings together several object code files, either stand-alone or in libraries, and
creates the final executable.

All of the above is hidden from the user in most cases. For example, if only the standard C library
isused, the linker automatically searchesit and there is no need to explicitly include it in the link-

56

The C Cheat Sheet Revision 1.0 September 5, 2000

ing process. If additional libraries need to be used, however, they must be specified to the driver
program. For example, if you need to make use of alibrary called seri al . | i b, you can indi-
cate thisto the BCC32 program as follows:

bcc32 main.c serial.lib

The BCC32 program automatically recognizesseri al . | i b asalibrary (it doesn’t try to com-
pileit!) and passesit to the linker.

There can a so be amixture of sourcefiles, object files, and libraries passed to the driver program.
For example:

bcc32 main.c filel.obj serial.lib

The driver program compiles mai n. c to create mai n. obj , then passes the object file
filel.obj andseri al.li b tothelinkerin order to create the final executable.

If you wish to create an object file from source code but not link, the *-c’ option can be used:
bcc32 -¢c main.c

Thiswill generate mai n. obj (i.e., preprocess, compile, assemble) but will not attempt to per-
form the link step.

9.0 The Standard C Library

The specification for the C programming language not only describes the language components
but al so describes a standard set of functions that must be made available by all C compiler suites.
These functions comprise the standard C library.

Asthe name implies, the standard C library is a set of pre-compiled object filesthat can be linked
in with auser’s program. On Unix systems, thislibrary iscalled‘l i bc. a’ and istraditionally
supplied with the operating system (although installing a separate compiler, such as GCC, will
also install aseparate C library for use with that compiler). The BCC32 compiler under Windows
comes with thefile*CWB2. LI B, which isthe standard C library for Win32 applications.

In this section we briefly introduce the functions that comprise the C library in aggregate. A full
explanation of all functions and their calling protocolsis left for areference source, such asthe
on-line help available with your compiler or a standard C reference text.

9.1 Assertion Checking

Theincludefile<assert . h> definestheassert () function which expectsits argument to be
non-zero. If the argument is O, the program aborts immediately. Assertions are useful for ensuring
that things the programmer assumes to be true are indeed true at run-time. See Section 10.8 for an
example.

57

The C Cheat Sheet Revision 1.0 September 5, 2000

9.2 Character Classification

Theincludefile<ct ype. h> defines several functions that test properties of ASCII characters.
For example, thei spri nt () function determines whether or not its argument is a printable
character (i.e., not acontrol character like a newline or a backspace), and thei sdi gi t () func-
tion determines whether or not its argument is a decimal digit.

9.3 Error Reporting

The externally defined integer variable er r no is often set to meaningful values by components
of the standard C library to report errors. This variable is defined by including the file

<errno. h>. In addition, thisfile declares severa constants that describe the type of error. For

example, ENOFI LE is defined to be the constant that er r no is set to when the f open function
is called to open anon-existent file. The function per r or can be used to print a textual descrip-
tion of the error code.

Also see Section 10.9 for an example of error reporting using per r or .

9.4 Buffer Manipulation

This library component has aready been introduced in Section 7.3. The functionsin this module
are declared by including the <st r i ng. h> include file. The buffer manipulation functions sup-
port operations such as filling memory, copying memory blocks, and looking for bytesin a mem-
ory block.

9.5 Non-L ocal Jumps

The<set j np. h> include file defines two functions, set j np() and | ongj np() , which can
effect “non-local gotos’. These functions can cause program flow to jump back and forth between
any two points in a program, not necessarily in the same function or even the same sourcefile.
These functions are most often used to effect handling of run-time errors across an entire program
or to implement coroutines, a simulation of multi-threaded operation.

9.6 Event Signalling

The<si gnal . h> includefile defines functions and constants to support the handling of events.
For example, when a user presses the Ctrl+C key at the console, programs generally terminate.
The reason they do so is because they receive a“signal” known as SI G NT. The default action
for SI G NT isto terminate the program. Using the signal function, however, the programmer
may indicate an aternative course of action to follow in response to this event.

9.7 Variable-Length Argument Lists

Have you wondered by now how comethe pri nt f function can take a variable number of
parameters? Thisis because C actually supports functions which can be passed more parameters
than some minimum number. The functions defined in the <st dar g. h> include file allow the
programmer to define variable-length argument lists and write functionslike pr i nt f that can
make good use of this concept.

58

The C Cheat Sheet Revision 1.0 September 5, 2000

9.8 Miscellaneous Functions
The<st dl i b. h>includefile declares several functions that are commonly used:

e atof, atoi, atol:interpret stringsasintegers

e strtod, strtof, strtol d:interpret stringsasrea numbers
e« strtol, strtoul:interpret stringsasintegers (morerobust than at oi or at ol)
 rand, srand: generate pseudo-random numbers

* abort: immediately terminate the program

» at exi t: define code to execute before a program terminates

e exi t:terminate the program with proper cleanup and areturn value
* get env: return values from the external environment (like PATH)

* syst em run external programs

* Dbsearch, qsort: efficient sorting and searching of arrays

» abs, | abs:integer absolute values

» di v:integer division and remainder in a single operation

9.9 String Handling

The<st ri ng. h>includefile declares al of the functions that expect to operate on null-termi-
nated character strings. Some basic string operations were aready discussed in Section 6.4.2. The
more common string functions are:

* strcpy, strncpy:copy onestring to another

e strcat, strncat: append one string to another

* strl en: return the length of astring

» strchr:find acharacter within a string

o strstr:findasubstring within a string

e strcnp, strncnp: comparetwo strings for equality

* strtok: split astring into tokens separated by delimiters

9.10 Time Functions

The<t i me. h> include file defines various components to support time and date functions. The
cl ock function can be used to time how long a subroutine takes to execute, for example. The

t i me function returns the current date and time as avariable of typet i ne_t , whilethect i ne
function takes the return value of thet i me function and formatsit as a character string.

Consult reference documentation for additional functions and definitions in this module.

9.11 Floating-Point Math

Several mathematical functions, such assi n, cos, and at an are available to C programs. These
functions are declared by including the <mat h. h> includefile.

9.12 Standard 1/O

This library component has already been introduced in Section 7.1. The functionsin this module
are declared by including the <st di 0. h> include file. The standard 1/0O functions support buff-

59

The C Cheat Sheet Revision 1.0 September 5, 2000

ered input and output to file streams, which include both regular disk files aswell asthe user’s
console and keyboard.

10.0 Tips, Tricks, and Caveats

10.1 Infinite L oops

A loop introduced withwhi | e or f or (or other looping statement) may sometimes be desirable
when the exit condition is more clearly written in the middle of the loop. For example, this sub-
routine only returns when the correct password is entered.

#i ncl ude <string. h>
extern const char *getString(void);
static const char *password="Swordfish”;

voi d checkPassword(void) {
while (1) {
if (strcnp(getString(), password) == 0) return;
}
}

Note the expression ‘1’ isused as the test expression of the whileloop. This“expression” always
evaluates to true thus the loop never terminates, unlessabr eak, r et ur n, or got o statement is
encountered.

Aninfinite loop can aso be introduced with the f or statement:
for (;;)

10.2 Unallocated Storage
This program will crash:

#i ncl ude <stdio. h>

void mai n(void) {
int *intPtr;
printf(“Type an integer: “);
fscanf(stdin, “%l", intPtr);
printf(“You typed: %\n”, *intPtr);
}

It seemsto be consistent: thef scanf function expects a pointer to an integer in which to store
the conversion result, so we provide it with i nt Pt r , which is a pointer to an integer.

The problem is that we have not identified any space for thisinteger in memory. The variable

i nt Pt r pointsto the address of some integer, but that integer has not been declared. Put another
way, thei nt Pt r variableisnot being initialized and is pointing to some random place in mem-
ory. Thef scanf function will then store the integer it reads to this random place, causing a
crash.

60

The C Cheat Sheet Revision 1.0 September 5, 2000

Put yet another way, space is created in memory to store data only by declaring non-pointer vari-
ables or dynamically (using mal | oc; see Section 7.2). Declaring a pointer variable does not
create space to store data. This mistake is very commonly made by new C programmers.

Using unallocated storage is even more common when using strings. The distinction between an
actual array of characters, i.e., the string, and the pointer to these characters, which is how we
refer to the string in function calls, is frequently confused. Here' s another crash-worthy program:

#i ncl ude <string. h>

void mai n(void) {
char *nmyString;
strcpy(myString, “Hello!”);
}

Once again, we are copying characters from one “string” to another, but there is no memory space
set asidefor my St ri ng. Thisisavariable that points to...nothing. The correct implementationis
either:

#i ncl ude <string. h>

void mai n(void) {
char myString[100];
strcpy(myString, “Hello!”);

or:

#i ncl ude <string. h>
#i ncl ude <stdlib. h>

void mai n(void) {
char *nyString = (char *)mall oc(100);
strcpy(myString, “Hello!”);

10.3 The Null Statement

A single semicolon isthe ssimplest C statement; it smply means “do nothing”. This can be useful
as a placeholder for future code:

if (error) {
; // Wite this code |ater
}

Also, the semicolon can be used as anull body of aloop statement when all the useful work is
actually done in the loop statement itself:

while (*(volatile char *)0x1000 == 0) /* NULL */ ;

61

The C Cheat Sheet Revision 1.0 September 5, 2000

This statement waits for the contents of memory location 0x1000 to be non-zero. There is nothing
to be done in the body of the loop while waiting. The comment *‘NULL’ isthere asaform of doc-
umentation, reminding us that we intended there to be an empty loop body.

10.4 Extraneous Semicolons
A poorly-placed semicolon can lead to program bugs that are very tough to find. Consider:

for (i=0; i < 10; i++);
printf(“%\n”, i);

Thislooks right...but notice that extra semicolon at the end of thef or statement. This creates a
loop with anull body (see Section 10.3 above). The pri nt f statement will only execute once,
printing the value 10. This program fragment is perfectly legal; the compiler won't raise any
errors.

10.5st r cnp isBackwards

Remember that in comparing two strings, the strcmp function returns O if they are equal. Thus, the
following is correct:

if (strenp(strl, str2) == 0) { /1 They’re equa
Some programmers find this so annoying that they define the macro:
#define streq(sl,s2) (strcnp((sl),(s2)) == 0)
and then write the more intuitive:
if (streq(sl,s2)) { /1 They’'re equal

10.6 Unter minated Comments

Forgetting to include the final **/* of amulti-line comment can lead to a compiler error many
lines away from the comment, and this can be tough to find. For example:

/* Here starts a coment...but we didn't finish it!
voi d subroutine(void) {

dosonething(); /* This coment’s term nator finishes the
coment started at line 1 */

}

The C compiler will see only one line: the last. Thiswill cause the strange error “Unexpected }”.
Note that the BCC32 compiler has the command-line option ‘- C' which enables “nested com-
ments”. This option will generate a much more useful error message in response to this situation.

10.7 Equality and Assignment

One of the greatest criticismslevelled at Cisthe use of ‘=="and ‘=" to mean totally different
things. (Surprisingly, this criticism was not considered sufficient reason to change the situationin

62

The C Cheat Sheet Revision 1.0 September 5, 2000

Java.) Confusing the equality and assignment operators can be a source of very frustrating bugs.
Consider the example:

while (error = 0) { /1 QOOPS
error = tryitagain();

}

The problem isthat thewhi | e-expression should have beenwritten‘err or == 0’. Aswritten,
thewhi | e-expression will assign Oto er r or and always skip the body of thewhi | e loop.

The BCC32 warning message “ Possibly incorrect assignment” (enabled by the “*-wpi a’ com-
mand-line flag) alerts you to these types of errors.

10.8 Assertion Checking

Usetheassert function liberally (see Section 9.1 and the reference documentation for the
assert function). Thisfunction takes a single parameter, which it expects to be non-zero (i.e.,
true). If the parameter is 0, the program exits immediately. Assertion checking is one way of pro-
gramming defensively. Rather than assuming that some condition is true by necessity, the asser-
tion check verifies this assumption prior to proceeding with the program.

For example, consider afunction intended to count the number of linesin atext file. Thisfunction
assumes that it is passed afile pointer, as returned by acall to f open. But what if thisis not the
case? Rather than proceed blindly with the code, we first verify our assumption.

#i ncl ude <stdio. h>
#i ncl ude <assert. h>

int countLines(FILE *file) {
int i;
char |ine[80];

assert(file = 0);
for (i=0; fgets(line, 80, file); i++) /* NULL */ ;
return i;

}

If it so happens that this function is called with anull pointer, the program will stop here rather
than trying to proceed. The closer an error isfound to its source, the easier it will be to find.

10.9 Error Checking

Programs that actively try to intercept and meaningfully describe run-time errors take longer to
develop but often pay for themselves many times over in saved debugging time. Consider, for
example, aprogram that counts the number of linesin afile. The name of thefileisthefirst
parameter of the program. The naive approach to thisis as follows:

#i ncl ude <stdio. h>
void main(int argc, char *argv[]) {

FILE *file = fopen(argv[1l], “rt”);
int lines = 0;

63

The C Cheat Sheet Revision 1.0 September 5, 2000

char |ine[80];

while (fgets(line, 80, file)) line++
printf(“%l lines\n”, line);
}

There are many things that could go wrong:

* The program was not called with an argument

» Theargument to the program does not represent an existing file name
* Anerror occurred while reading the file

 Theprintf statement was unable to display the results

Any one of the above conditionswill lead to incorrect behavior, possibly a crash, with little or no
description of what went wrong. A more robust version of the above might be as follows:

#i ncl ude <stdi 0. h>
#i ncl ude <errno. h>

int main(int argc, char *argv[]) {
FILE *file;
int lines = 0;
char 1ine[80];

if (argc < 2) {
fprintf(stderr, “No argunment specified.\n");
return 1,
} else if (argc > 2) {
fprintf(stderr, “Too many argunents specified.\n");
return 1,

}

file = fopen(argv[1], “rt");

if (file ==0) {
perror (“fopen”);
fprintf(stderr, “Unable to open ‘%’'\n”, argv[1]);
return 1,

}
while (fgets(line, 80, file)) lines++

/1 fgets could have failed either via end-of-file or
/1 reading error.
if (! feof(file)) {
fprintf(stderr, “Error while reading input file\n”);

return 1;
}
printf(“%l |ines\n”, |ines);
return O;

64

The C Cheat Sheet Revision 1.0 September 5, 2000

A much longer program...but a much better program too. Note that we checked just about all the
things that could go wrong, except for callstof pri nt f andfinal call topri ntf attheend.
These functions are also capabl e of returning error codes in case of failure, but what would we do
in this case? Without an alternative means of communicating with the user, there is no point in
testing for these errors.

Using subroutines to encapsulate both functionality and error checking is a good step towards
managing the complexity of robust programs and also making them more readable. For example,
consider the function:

FI LE *QOpenFil e(const char *name, const char *node)

This function could act as awrapper around f open, reporting any errorsthat arise. The main
program could then simply call OpenFi | e and not worry about the error reporting:

if (OpenFile(argv[l], “rt”) == 0) return 1;

10.10 Programming Style

The question of styleis perhaps difficult to define precisely. Subjectively, good style is what
allows aC program to be easily read, written, and understood. Thisis not simply an aesthetic mat-
ter. It is possible to write some terrible code in C (and most any other language) that, unfortu-
nately, works exactly as intended. When it istime for othersto read this code (as part of a code
review, perhaps) or for othersto modify it, the code becomes a burden that carrieswith it areal
penalty in productivity.

Consider, for example, the program shown below in Figure 1 that prints the value of the constant
e to 3142 digits (written by Roemer B. Lievaart). While interesting, imagine if you were given
the task of modifying this program so that it printed more digits. Where would you begin? The
program, certainly intentionally designed to be interesting rather than useful, illustrates the idea
that the source code is meant for both humans and computers.

There are some general guidelines that can lead to the development of good style:

* Beconsistent. Use a style that matches existing code (if you are modifying or adding
on to aprogram). It isdifficult to read a program that uses different styles, as the style
changes impair compreiension. Some of the components that should be consistent are:

- the amount of indentation from one nesting level to the next
- the style of curly brackets (on the same line? on new line?)
- the naming convention of variables, functions, constants, etc. (see below)

» Use meaningful names for variables, functions, and constants. Avoid generic names

like“i " for variables unless they are very short-lived and unimportant. For example,
seeif you can figure out what this subroutine does:

65

The C Cheat Sheet Revision 1.0 September 5, 2000

char
_3141592654[3141
], _3141[3141]; 314159[31415], 3141[31415];main(){register char*
_3.141,*_3_ 1415, *_3__1415; register int _314, 31415, 31415,*_ 31,
314159, 3 1415;* _3141592654=__31415=2, 3141592654[0][_3141592654
-1]=1[__3141]=5; 3 1415=1;do{_3_14159=_314=0, __31415++;for(_31415
=0; 31415<(3,14-4)* 31415; 31415++) 31415[3141]=_314159[31415]= -
1; 3141[*_314159=_3_14159]=_314; 3 _141=_3141592654+__3_1415; 3_1415=
_3.1415 +_3141;for (_31415 = 3141-

31415 31415; _31415--
. 3141 ++, 3.1415++){ 314
+= 314<<2 ; _314<<=1; 314+=
* 3 1415; 31 = 314159+ 314;
if(1(*_31+1))* 31 = 314 /
31415, 314 [3141]= 314 %
31415 ;* (3 1415=_3 141
)+= * 3 1415 = * 31; while(*
31415 >= 31415/ 3141) *
3 1415+= - 10, (*--_3__ 1415
) ++; _314= 314 [3141]; if (!
3 14159 && * _3_.1415) 3 14159
=1, 3 1415 = 3141- _31415; }if(

314+(__31415
while (++ *
)* 3 _141--=0

>>1)>=__ 31415)
_3_141==3141/ 314
; Jwhile(_3_14159

) ; { char * __3_14= *“3.1415";
wite((3,1), (--*__3_14, 3 14
), (_3_14159 ++, ++_ 3 14159)) +
3.1415926; } for (_31415 = 1;
_31415<3141- 1; 31415++)wite(
31415% 314- (3,14), 3141592654
_31415] + “0123456789", " 314"
[3]+1)-_314; put s((*_3141592654=0
, _3141592654)) ; _314= *"3.141592";}

Figure 1. C program to print 3142 digits of the constant e. This program does not exhibit good
programming style.

doubl e S(double *level, int Q {
int retval
doubl e shrinp_on_a_plate = 0;
for (retval =0; retval < Q retval ++) {
shrinp_on_a plate += level[retval]/Q

}

return shrinp_on_a_pl ate;

}

Now consider the version with more meaningful variable names:

doubl e nean(double *array, int nunEntries) {
int count;

66

The C Cheat Sheet Revision 1.0 September 5, 2000

doubl e avg = 0;
for (count=0; count < nunEntries; count++) {
avg += array[count]/nunEntri es;

}

return avg;

}

To the compiler, they are one and the same program. To humans, the second program is
much more readable. The use of meaningful names for program components leads to self-
documenting code, meaning that few comments need to be written to explain program

operation.t

Develop a naming style that readily identifies functions, local variables, global vari-
ables, constants, etc. Here are some suggestions.

Use ALL_CAPITALSfor constants defined using #def i ne directives.

Use either M xedCaps notation or under scor e_separ at or notation through-
out your program.

Distinguish between function parameters, local variables, and global variables by
using single-letter prefixes. For example:

voi d SomeFunction(int pNunmEntries, double *pArray) ({
int | Count;

for (I Count = 0; |Count < pNunmEntries; | Count++) {
pArray[l Count] *= gCurrent Scal i ngFact or;

}
}

Avoid global variablesif possible, especially as a means of communication between
program modul es.

Asageneralization of the above, develop code that is highly modular and well encap-
sulated. Group logically-related functions and variables together into a single source
file. In that file, only “expose” (i.e., declare non-static) the functions and global vari-
ables that truly need to be seen by other modules.

Do not use “magic numbers’, i.e., constants that appear arbitrary. Use either
#def i ne statements or const -qualified variables to give these constants meaning-
ful names. For example, imagine running across the following line in a program:

char byt es[523776];

The above would certainly challenge interpretation. More meaningful is:

1. Asamatter of interest, thevariablenameshri np_on_a_pl at e wasindeed encountered in the source
code of acommercial application.

67

The C Cheat Sheet Revision 1.0 September 5, 2000

const int BytesPerSector = 512;
const int SectorsPerTrack = 1023;
char byt es[Byt esPer Sector * SectorsPer Track];

e Comment well. Note, this did not say “comment alot”. There are places where com-
ments are appropriate, but too many comments can obscure the code. Well written,
self-documenting code (see above) should not need too many comments. Good com-
ments are ones that give the reader hints about the big picture, how ablock of code
doesitsjab, issues that modifiers of the code must keep in mind, etc.

» Keep al comments up-to-date. It has been said that the only thing worse than inade-
guate documentation is documentation that no longer agrees with the code.

* Avoid the temptation to write highly-compact, (supposedly) highly-optimized code. It
is much more important to write clear and legible code first, then to optimize the code
that truly makes a difference to execution time.

» Keep al subroutines short, preferably to one screen height so you can see al of the
subroutine' s code in your editor. Excessively long subroutines are hard to understand.
Break out (i.e., refactor) logically-grouped chunks of your code into subroutines.

» Avoid excessive nesting levels. Going beyond the fourth or fifth indentation level indi-
cates that the code istoo complicated. Use additional subroutinesto clarify the code.

11.0 Differences between Java and C

The C language proper can almost be considered a subset of Java. The differences between them
can be very briefly summarized:

* Chasno classes. All of the Java language features dealing with classes (e.g., publ i c,
private,protected,interface,extends,etc.) arenot present. C, however, does
have structures, which are essentially classes with public variables and no methods.

* Thestarting point of aC program isthe mai n function. In Java, it isthe mai n method of
aclass.

* C has pointers, Java does not. Java has references, C does not. In practice, references and
pointers are exactly the same thing, but Java hides some of the complexity.

» Javaautomatically destroys objects once they are no longer needed (known as garbage
collection). C does not. In C, you must explicitly destroy memory allocated for a dynamic
object.

* InJava you usethei nport statement to indicate you want to use library components. In
C, you usethe#i ncl ude directive.

» C hasthe comma operator, Java does not.

68

The C Cheat Sheet Revision 1.0 September 5, 2000

Java has the >>> operator, C does not.

C hastheunsi gned built-in data type, Java does not.

Java strings are objects, C strings are arrays of the char type and end with a0 byte.
C has a preprocessor, Java does not.

Javabr eak and cont i nue statements can use label names, C does not allow this. How-

ever, C hasthe got o statement which is essentially equivalent. Java has no got o statement.

69

