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PREFACE

This document is an introduction to the C programming language. Unlike a thorough reference 
manual this document is limited in scope. The main goal is to provide a roadmap that can answer 
basic questions about the language, such as what data types are supported or what a for loop 
looks like. The beginning C programmer can use this document to get started with the language 
and write small-to-medium-size programs involving simple I/O, file manipulation, and arithmetic 
computations.

This document relies heavily on examples to teach C. Examples allow the reader to quickly grasp 
the concept being presented but do not allow for a thorough explanation. This is consistent with 
the philosophy that this document is an entry point to the language, not a reference text. When 
questions arise that cannot be answered here, the reader is directed to three very useful resources:

• The on-line documentation that comes with the reader’s C compiler. This reference 
documentation thoroughly describes both the language structure and the library com-
ponents.

• The classic textbook “The C Programming Language”, 2nd edition, by Kernighan & 
Ritchie. Written by the architects of the C language, this text was published in 1988 
but has endured as both a reference and as a tutorial.

• The more recent text “C: A Reference Manual”, 4th edition, by Harbison & Steele. 
This text, as its name implies, is mostly a reference, not a tutorial, but it includes some 
of the latest changes in the language standard.

Finally, note that C, like spoken languages, does evolve with time. Even though it is the most 
mature of the three major system development languages currently in favor (C, C++, and Java) 
international standards committees continue to try to improve its character. For example, issues of 
internationalization have led to improved support for multi-byte character strings, a concept not 
formally part of the C language. A new proposal for the C standard has been submitted by the ISO 
as of December 1999. Your compiler’s documentation is the last word on compliance with the 
most recent standards.

It is assumed that the reader is familiar with programming concepts in general and may also be 
familiar with the Java programming language. The core Java language design was heavily influ-
enced by the C language and the “look and feel” of a C program at the syntactic level will be quite 
familiar to Java programmers. Differences in the two languages are highlighted throughout this 
document (also see the summary in Section 11.0).
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1.0 Introduction
A C program may occupy as few as 5 lines in a single file. Here is the venerable “Hello world!” 

program in the file “hello.c”1:

#include <stdio.h>

void main(void) {
printf(“Hello world!\n”);

}

This text file (known as the source code) is compiled to an executable file using a C compiler. For 
example, using the Borland “BCC32” program:

bcc32 -ehello.exe hello.c

Running the “hello.exe” program prints “Hello world!” on the screen (in a console window).

Java programmers may recognize the main() method but note that it is not embedded within a 
class. C does not have classes. All methods (simply known as functions) are written at file scope.

1.1 The main() Function
The main() function is the starting point of the program. All C programs must have a main() 
function. While this function can be written as in the example above (but see footnote 1), it is 
most often written with the following prototype (or signature):

int main(int argc, char *argv[])

While we may not quite understand all of the above, there are a few points to note:

• The return type of the main() function is an integer (type int). The value returned 
by the main() function is known as the return value of the program. Traditionally, a 
return value of 0 indicates that the program executed successfully while a non-zero 
value indicates an error condition. In many cases, we are not concerned with this 
return value and it is simply ignored.

• The parameters of the main() function (argc and argv) allow the C program to 
process command-line parameters. We will discuss this further in Section 7.6 after we 
have introduced character strings.

1. One C practitioner has declared that the author of any document which writes ‘void main(void)’ 
“...doesn't know or can't be bothered with learning, using, and writing about the actual languages defined 
by their respective International Standards. It is very likely that the author will make other subtle and not-
so-subtle errors in the book.” Indeed, the C standard says that the main function must always return an 
integer. But this is not a document describing a standard; it’s simply here to kick-start the learning pro-
cess. Nonetheless, be on the lookout for subtle and not-so-subtle errors!

J
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The main() method in Java has the prototype ‘main(String[] args)’ which provides 
the program with an array of strings containing the command-line parameters. In C, an array does 
not know its own length so an extra parameter (argc) is present to indicate the number of entries 
in the argv array.

1.2 Include Files
The first line of our example program:

#include <stdio.h>

inserts the contents of a file (in this case, a file named stdio.h) into the current file, just as if 
you had cut and pasted the contents of that file into your source code. The purpose of these files 
(known as include files or header files) is to tell the compiler about the existence of external func-
tions which the source code will make use of.

In this case, the file stdio.h defines the function printf() which we use to print text to the 
screen. Without including this file, the compiler would generate an error when it encountered the 
printf() function in the source code since this function is not a part of the core language.

The stdio.h file defines many other functions, all related to the “Standard I/O” component of 
the standard C library. We will discuss standard I/O in more detail in Section 7.1 and the concept 
of libraries in Section 8.3. While the standard C library is not part of the core C language, it is dis-
tributed with the C compiler (along with many other libraries) and is actually a part of the C lan-
guage specification.

Java users may see the similarity between the #include statement and Java’s import state-
ment. Both serve the same purpose, to “pull in” external components for use by the given pro-
gram.

1.3 Whitespace
The C language generally ignores whitespace (i.e., spaces, blank lines, tabs, etc.). The “Hello 
world!” program could have been written more succinctly (and illegibly) as:

#include <stdio.h>
void main(void){printf(“Hello world!\n”);}

The only cases where whitespace is significant are in preprocessor statements (such as the 
#include statement; see Section 1.4 below for more details on the preprocessor) and within 
character strings, like “Hello world!\n”.

1.4 The Preprocessor
When a line in a C program begins with the octothorpe character ‘#’, it indicates that this line is a 
preprocessor directive. The preprocessor is actually a program that runs before the C compiler 
itself. It serves to perform text substitutions on the source code prior to the actual compilation.

J

J
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Java does not have a preprocessing step. It can be argued (quite justifiably) that Java’s language 
features obviate the need for any text substitutions. With C however, the preprocessor can often 
provide useful program development support.

1.4.1 The #define Directive
The simplest form of preprocessor directive is the #define statement. As an example, consider 
the following program:

#define PI 3.1415926535

void main(void) {
printf(“The constant pi is %g\n”, PI);

}

As the first step in the compilation process, the preprocessor looks for all occurrences of the token 
“PI” and replaces it with the token “3.1415926535”. What the actual C compiler sees, then, is 
the following:

void main(void) {
printf(“The constant pi is %g\n”, 3.1415926535);

}

Note that the preprocessor has simply substituted the text “3.1415926535” for the text “PI”. 
The #define statement initiated this substitution. Also note that the actual line with the 
#define directive has been removed (and interpreted) by the preprocessor. The C compiler does 
not see these directive lines.

The #define directive can also perform rudimentary macro substitutions. Again, an example:

#define HALFOF(x) x/2

void main(void) {
printf(“Half of 10 is %d\n”, HALFOF(10));

}

The actual C compiler sees the following source code after preprocessing:

void main(void) {
printf(“Half of 10 is %d\n”, 10/2);

}

A very common use of macro substitutions is in the definition of “pseudo-functions”. For exam-
ple, here are some ways to compute the maximum, minimum, absolute value, and signum func-
tions (see Section 4.8 for a description of the ternary operator ‘?:’):

#define max(x,y) ((x) > (y) ? (x) : (y))
#define min(x,y) ((x) < (y) ? (x) : (y))
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define sgn(x) ((x) > 0 ? 1 : ((x) < 0 ? -1 : 0))

J
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Macro definitions of this form can become quite unwieldy, which is most likely why the prepro-
cessor has not survived to more recent languages like Java where better (and safer) solutions exist.

The heavy use of parentheses in the above macros is to prevent unintended side effects. This is 
best illustrated with an example:

#define SQUARED(x) x*x

void main(void) {
int i = 5;
printf(“i+2 squared is %d\n”, SQUARED(i+2));

}

The intention here is to print the square of i+2 (which should be 5+2 squared, or 49). But the 
compiler sees the following:

void main(void) {
int i = 5;
printf(“i+2 squared is %d\n”, i+2*i+2);

}

which will print 5+2*5+2 or 17, following proper order of operations. Adding those nuisance 
parentheses fixes things, however:

#define SQUARED(x) (x)*(x)

now expands SQUARED(i+2) as (i+2)*(i+2) and the program works correctly.

1.4.2 Comments
The preprocessor removes all text within the comment delimiters /* and */, just as in Java. For 
example:

/*
This comment is removed by the preprocessor
and is not seen by the actual compiler.

*/
void main(void) {

printf(“Hi!\n”); /* Another comment! */
}

While not part of the original C language definition, single-line comments introduced by // are 
supported by most modern C compilers, as with Java.

1.4.3 The #include Directive
We have already seen that the purpose of the #include directive is to insert another file into the 
file to be compiled. Again, it is as if you were to copy and paste the contents of the include file 
into the source code.

You may actually encounter two forms of the #include directive. The first has already been 
encountered:
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#include <somefile.h>

The second form uses quotation marks instead of angle brackets:

#include “somefile.h”

The difference in these two forms lies in the include file search path. This is a list of directories 
that the preprocessor searches in order to find the include file. This search path should be config-
ured when you install the compiler so you shouldn’t generally have to worry about it.

With the second form of the #include directive (using quotation marks), the preprocessor first 
looks in the same directory as the source file. If the include file is not found there, then the search 
path is considered.

Practically, the angle brackets form (e.g., <stdio.h>) is used to include system files that are 
part of the C compiler system, while the quotation marks form (e.g., “mystuff.h”) is used to 
include files that you write yourself and are part of your project.

1.4.4 The #ifdef/#else/#endif Directives
There are several directives that can be used to effect conditional compilation. Most often, condi-
tional compilation is used either as a debugging tool or to compile different code for different 
hardware architectures. Here is an example that shows how to add debugging statements that can 
easily be turned on or off.

#include <stdio.h>

#define DEBUG 1

void main(void) {
#ifdef DEBUG

printf(“Debugging is enabled.\n”);
#else

printf(“Debugging is disabled.\n”);
#endif
}

The #ifdef directive tells the preprocessor to pass the subsequent lines to the compiler only if 
the item following #ifdef has been defined using a #define directive.

In this example, the token DEBUG has been defined to be 1, so the #ifdef statement succeeds. 
What the C compiler sees, then, is the following:

void main(void) {
printf(“Debugging is enabled.\n”);

}

Everything following the #else directive is not passed to the compiler (up to the #endif direc-
tive).
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It is easy now to switch between debugging mode and non-debugging mode. Simply comment out 
the line that defines DEBUG:

//#define DEBUG 1

Now, everything between #ifdef and #else is ignored, and the C compiler only sees the code 
between #else and #endif.

1.4.5 More Directives
There are other, less frequently used directives that you may want to investigate in a thorough C 
reference manual:

• #undef un-defines a definition created with #define.

• #if is a more general form of #ifdef that allows for expressions to be evaluated 
rather than simply testing for a label being defined or undefined.

• #error generates an error during compilation. It can be used to indicate that some 
piece of code is being compiled when it should not be.

• #elif can be used to augment #ifdef/#else/#endif to have multiple clauses in 
the test.

• #pragma is a compiler-specific directive that can be used to communicate with the 
compiler to, for example, enable or disable certain optimizations or warning messages.

1.4.6 Predefined Macros
The preprocessor defines some constants automatically, as if they had been defined using 
#define directives. These include the constants __FILE__ which is the name of the source 
file, __LINE__ which is the number of the current line being compiled, __DATE__ which is the 
current date, and __TIME__ which is the time that the source file was compiled. These constants 
can aid in debugging or in adding some version information to your program (for example, date 
and time of last compilation).

Here, for example, is the definition of a macro that can aid in debugging:

#define TRACE { printf(“Executing %s line %d\n”, __FILE__, __LINE__); }

A simple way to trace through a program’s flow of execution is to sprinkle some TRACE state-
ments at key points:

void func(void) {
TRACE
dosomething();
TRACE
...

}
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Compiler vendors generally define their own predefined constants to augment the above. For 
example, the BCC32 compiler always defines the constant __BORLANDC__ to indicate the com-
piler vendor. Programs can use these additional constants to tailor the code based upon a specific 
vendor’s implementation or other conditions.

2.0 Basic Data Types
C supports the following a wide variety of built-in data types. Surprisingly, more modern lan-
guages like Java have fewer data types. The reason is that the more data types there are, the more 
rules there are regarding how they mix and thus the higher the possibility of confusion. You will 
find that of the 8 data types in C that can store integers, you will most likely only use two on a 
regular basis.

2.1 Signed Integer Types
The four data types that can be used to represent integers are (from smallest to biggest):

• char
• short
• int
• long

The char type, as its name implies, generally stores 1-byte (8-bit) integers which can represent 
ASCII characters. Even though character storage is the most common use for this type, do not for-
get that essentially this is an integer type.

The short, int, and long types similarly hold integers but of varying bit widths. Most com-
monly, the short type stores 16-bit integers (2 bytes). The int type stores either 16-bit or 32-
bit integers, and the long type stores anywhere from 16-bit to 64-bit integers.

The fact that the actual bit widths that correspond to these types is not specified in the original C 
language standard has been a vexing problem for C programmers. Each compiler vendor is free to 
choose whatever bit width they want. Recent enhancements to the C standard have addressed this 
problem by definining known-width types such as int16_t which indicates a 16-bit integer.

Usually, however, the int type corresponds to the “native” size of an integer of the underlying 
computer. The early IBM PC machines (80x86 architectures) were 16-bit machines hence the 
compilers defined the int type to be 16-bit integers. With the advent of 32-bit computing (for 
example, the Pentium architectures) modern compilers for the PC architecture define the int 
type to be 32-bit integers. In both 16-bit and 32-bit architectures, however, compilers generally 
defined long to be 32-bit integers and short to be 16-bit integers.

This type of confusion has been fixed in languages like Java where the data type is strictly defined 
to represent a certain number of bits. In C, you must read the documentation of your vendor’s C 
compiler to determine how many bits are represented by each type (see Section 2.5 for the details 
of the BCC32 compiler).

J
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2.2 Unsigned Integer Types
All of the four types described above may have the keyword unsigned prepended to form inte-
ger types of the same bit width but not allowing negative numbers:

• unsigned char
• unsigned short
• unsigned int
• unsigned long

The difference between the signed and unsigned integer types is simply whether or not we are 
applying the two’s complement convention. With the signed types, the bits in an integer are inter-
preted as a two’s complement number (i.e., the uppermost bit is the sign bit, etc.) With the 
unsigned types, the bits in an integer simply represent magnitude and there is no sign bit.

Note that Java has no unsigned types.

Unsigned types can store larger numbers (in magnitude) but, clearly, cannot represent negative 
numbers. For example, counting how many times a key is pressed is naturally a good fit for an 
unsigned data type as it makes no sense for this to be a negative quantity.

Practically, we recommend you avoid unsigned numbers unless the expanded range is truly 
required. Mixing signed and unsigned numbers (unavoidable when dealing with the standard C 
library) leads to several potential sources of errors, or at the very least lots of warning messages.

2.3 Integer Overflow
It is not an error to exceed the number of bits in an integer type as a result of some operation. The 
variable will simply “roll over” or wrap around to the other end of its range. For example:

#include <stdio.h>

void main(void) {
unsigned val = 65530; // maximum unsigned is 65535
printf(“val+10 is %u\n”, val+10);

}

This code will print the value 4, since 65530+10=65540 which is too big to fit into 16 bits. All bits 

beyond 16 are discarded and what is left is the number 4 (65540- ) in the lowest 16 bits.

The same principle holds for signed integer types:

#include <stdio.h>

void main(void) {
int val = 32760; // maximum signed is 32767
printf(“val+10 is %d\n”, val+10);

}

J

2
16
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This code will print -32766. Note that 32760+10=32770. If you subtract  from this quantity 
you obtain the wrapped-around result, -32766.

Java programmers familiar with the for loop may find it surprising that the following code is 
wrong:

#include <stdio.h>

void main(void) {
unsigned i;

for (i=10; i >= 0; i--) {
printf(“i is %u\n”, i);

}
}

While we expect this code to print the numbers descending from 10 through 0, in fact this code 
will print an endless stream of numbers. The problem is that the variable i is of unsigned type 
and unsigned types are always greater-than-or-equal-to 0. Thus, the termination condition of the 
for-loop (i >= 0) is always true. The iteration statement i-- takes the value of i from 0 to 
65535 rather than -1, as expected.

These forms of subtle complexities and pitfalls are most likely the reason that Java has no 
unsigned types. Note, however, that good compilers (including BCC32) will issue a warning indi-
cating that the termination condition of the for-loop is always true. MORAL: Do not ignore com-
piler warnings.

2.4 Real Data Types
C has three data types that can represent real numbers:

• float
• double
• long double

The float type is used to represent single-precision numbers while the double type represents 
double-precision numbers. The long double type is used for even more precision. Typically, 
the float type occupies 32 bits, the double type occupies 64 bits, and the long double 
type occupies 80 bits, but again these bit widths are not specified in the C language standard.

2.5 BCC32 Implementation
For the BCC32 compiler, the actual sizes of the basic data types along with their allowable ranges 
are shown in Table 1 below.

2.6 The void Type
We have seen function declarations of the form:

void main(void) {

2
16

J
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The keyword void instead of a data type indicates “no type”, i.e., nothing there. Thus, a function 
declared as returning a void type in fact does not return any value. Similarly, when the argument 
list of a function is simply declared as void (as with the example above) then the function does 
not take any arguments.

Variables cannot be declared to be of void type (although pointers to void type are useful, but 
we defer this discussion until Section 6.3).

3.0 Control Flow
The structures that C implements for directing the flow of a program are:

• Selection (using if/else/endif and switch/case)
• Iteration (using for, while, and do/while)
• Direct (using goto, break, continue, return)

3.1 The if/else/endif Statements
The if statement only executes code if a given expression is true. For example:

#include <stdio.h>

Table 1: Basic Data Types for BCC32

Data Type Bit Width
Minimum

Value
Maximum

Value

char 8 -127 127

short 16 -32768 32767

int 32

long 32

unsigned char 8 0 255

unsigned short 16 0 65535

unsigned int 32

unsigned long 32

float 32

double 64

long double 80

2
31

– 2
31

1–

2
31

– 2
31

1–

0 2
32

1–

0 2
32

1–

3.4
38×10– 3.4

38×10

1.7
308×10– 1.7

308×10

1.1
4932×10– 1.1

4932×10
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void main(int argc, char *argv[]) {
if (argc > 1) {

printf(“You passed some command-line parameters.\n”);
} else {

printf(“You passed no command-line parameters.\n”);
}

}

Immediately following the if statement must come an expression enclosed in parentheses. If the 
expression evaluates to true (i.e., a non-zero value) then the code following the if (up to the 
else) is executed, otherwise the code following the else is executed.

Note that the else-clause is optional. We can simply write, for example:

#include <stdio.h>

void main(int argc, char *argv[]) {
if (argc > 1) {

printf(“You passed some command-line parameters.\n”);
}

}

3.2 Compound Statements
The use of curly brackets above introduces the important notion of a compound statement. The 
actual syntax of the if statement is:

if (expression) statement;

That is, only one statement is allowed to follow. However, a compound statement enclosed in 
curly brackets is equivalent to a single statement. Thus, we are allowed to write:

if (expression) {
statement;
statement;
statement;

}

Thus, the above example could have been written more concisely as:

#include <stdio.h>

void main(int argc, char *argv[]) {
if (argc > 1)

printf(“You passed some command-line parameters.\n”);
}

Only one statement followed the if thus we do not really need the curly brackets.
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Take note, however: it is strongly recommended that you always use curly brackets, even when 
you only write one statement. Why? Imagine that you wanted to augment the program above to 
also indicate how many command-line parameters were passed. The following would be a com-
mon way for a new student of C to proceed:

#include <stdio.h>

void main(int argc, char *argv[]) {
if (argc > 1)

printf(“You passed some command-line parameters.\n”);
printf(“In fact, you passed %d parameters\n”, argc-1);

}

The above code is not what was intended. Adding an extra statement requires that we include 
curly brackets now to create a compound statement. The correct code is:

#include <stdio.h>

void main(int argc, char *argv[]) {
if (argc > 1) {

printf(“You passed some command-line parameters.\n”);
printf(“In fact, you passed %d parameters\n”, argc-1);

}
}

Had those curly brackets been in the program already, the error would not have been introduced. 
This is an example of defensive programming style. Assume you are going to make errors in writ-
ing the code and prevent them. Always writing compound statements even when not necessary is 
a good thing to do. This will be even more important when writing else-if statements (see 
below).

3.3 Nested if Statements
It is possible to choose from several blocks of code using nested if statements. For example:

#include <stdio.h>

void main(int argc, char *argv[]) {
if (argc < 2) {

printf(“You need to enter at least 1 parameter\n”);
} else if (argc < 4) {

printf(“Everything is OK.\n”);
} else {

printf(“You entered too many parameters.\n”);
}

}

This is a “nested” if statement because there is no true else-if statement in C. The else-if part 
is actually another if statement nested within the else clause of the first. More obvious indenta-
tion and extra curly brackets will highlight this:

#include <stdio.h>
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void main(int argc, char *argv[]) {
if (argc < 2) {

printf(“You need to enter at least 1 parameter\n”);
} else {

if (argc < 4) {
printf(“Everything is OK.\n”);

} else {
printf(“You entered too many parameters.\n”);

}
}

}

This is one situation (and perhaps the only situation) where the extra curly brackets aren’t really 
needed and just clutter up the program. The first form of the example is preferred for clarity.

3.4 The switch/case Statement
The switch/case statement is essentially equivalent to if/else/endif but with a few 
twists. Here is an example:

#include <stdio.h>

void main(int argc, char *argv[]) {
switch (argc) {
case 0:
case 1:

printf(“You need to enter at least 1 parameter\n”);
break;

case 2:
case 3:

printf(“Everything is OK\n”);
break;

default:
printf(“You entered too many parameters.\n”);
break;

}
}

The expression following the switch statement is evaluated (it must be an integer-valued 
expression) and the subsequent case statements are examined for a match. As shown in the 
example, multiple case statements may lead to the same code. The default clause (which is 
optional) is taken if none of the case statements match.

Why are all those break statements there? This is one of the twists of the switch/case state-
ment. The break statement skips past all other cases, past the end of the whole switch/case 
code. Without a break statement in a case-clause, the program begins to execute the next 
case-clause! For example:

#include <stdio.h>

void main(int argc, char *argv[]) {
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switch (argc) {
default:

printf(“argc is bigger than 1\n”);
// No “break” so fall through to next case!

case 1:
printf(“argc is bigger than 0\n”);

}
}

With argc>1, both printf statements will be executed. It is good practice when taking advan-
tage of this behavior to include a comment indicating that this is the intention, rather than making 
the reader wonder whether or not you simply forgot to include a break statement.

Many programmers claim that switch/case is unnecessary since if/else/endif has the 
same capabilities, plus dynamic expressions are allowed in the “case-clauses” rather than fixed 
integers (as required in switch/case clauses). It is possible, for example, to write:

if (argc >= 100 && argc <= 200)

but using switch/case, we would need to enumerate all 100 possible case statements:

case 100:
case 101:
case 102: (etc.)

There is, however, one subtle benefit to switch/case in certain cases. Because the case-
clauses are keyed to fixed integers, this allows the compiler to perform optimizations. If, for 
example, the case-clauses represent a “well-packed” set of integers, the compiler can generate a 
jump table indexed by the switch expression, which may be a much faster implementation than 
if/else/endif.

Finally, and this may be a matter of taste, switch/case statements are more legible and more 
easily modified than if/else/endif statements and are preferred programming style for 
selecting between fixed integers.

3.5 The for Statement
The for statement is a very compact form of iteration. The syntax of this statement is:

for (INITIALIZE; TEST; ITERATE)
STATEMENT;

The sequence of operations is as follows:

• INITIALIZE
• if TEST evaluates to 0, terminate the loop
• STATEMENT
• ITERATE
• if TEST evaluates to 0, terminate the loop
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• STATEMENT
• ITERATE
• if TEST evaluates to 0, terminate the loop

and so on. Recall that STATEMENT may actually be a compound statement enclosed in curly 
brackets.

Some things to note:

• The INITIALIZE, ITERATE, and STATEMENT components are all statements
• The TEST component is an expression
• The STATEMENT component may never be executed because TEST is evaluated 

immediately after INITIALIZE.

Here is an example:

#include <stdio.h>

void main(int argc, char *argv[]) {
int i;

for (i=0; i < argc; i=i+1) {
printf(“Argument %d is %s\n”, i, argv[i]);

}
}

The INITIALIZE statement in this case executes ‘i=0’. Then, the value of i is compared to 
argc and the loop does not execute if the comparison is false. Otherwise, the printf statement 
is executed and then the ITERATE statement ‘i=i+1’ executes. This process repeats (i.e., 
TEST-STATEMENT-ITERATE) until the expression ‘i < argc’ is no longer true.

Note that the declaration of a variable within the INITIALIZE statement is not allowed, as it is in 
Java. For example, the following is legal in Java (and C++) but illegal in C:

for (int i=0; i < argc; i=i+1) // ILLEGAL in C

3.6 The while Statement
The while statement is a subset of the for statement in that it only implements a TEST expres-
sion. For example:

#include <stdio.h>

void main(int argc, char *argv[]) {
int i;

i=0; // INITIALIZE
while (i < argc) {

printf(“Argument %d is %s\n”, i, argv[i]);
i = i+1; // ITERATE

}

J
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}

The compound statement following the while expression executes as long as the expression is 
true. As with the for statement, the while loop may never execute if the expression isn’t true to 
begin with.

Even though it appears that the while statement is unnecessary, given that for does it all, the 
while statement is very common in most programs. In many cases, no initialization is necessary 
and the iteration part of the loop is embedded in the statements that are executed.

3.7 The do/while Statement
A slight variation on the while statement is do/while. Here is a variation on the example from 
above:

#include <stdio.h>

void main(int argc, char *argv[]) {
int i;

i=0; // INITIALIZE
do {

printf(“Argument %d is %s\n”, i, argv[i]);
i = i+1; // ITERATE

} while (i < argc);
}

The form of the do/while statement is:

do {
STATEMENT;

} while(TEST);

Note that the STATEMENT component is executed at least once, regardless of whether or not 
TEST is true. For this reason, this example is not exactly equivalent to the prior examples using 
for and while.

3.8 The break Statement
The break statement can be used to prematurely terminate a loop. We have seen that it can also 
be used to exit a switch/case structure.

In a loop, the break statement causes the loop to terminate immediately and execution to pro-
ceed with the statements following the loop. For example:

#include <stdio.h>

void main(int argc, char *argv[]) {
int i;

for (i=0; i < argc; i=i+1) {
if (i >= 10) {
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break; //Only print the first 10 arguments
}
printf(“Argument %d is %s\n”, i, argv[i]);

}
// ‘break’ statement takes us here

}

The behavior for while loops and do/while loops is identical.

Note that Java’s labelled break statements (e.g., ‘break outer;’) are not allowed in C. But 
see the goto statement in Section 3.10 below which can be used to implement this feature.

3.9 The continue Statement
The continue statement proceeds to the next iteration of a loop, skipping the remaining state-
ments. In a for loop, the continue statement causes execution to jump to the ITERATE clause 
of the for statement:

#include <stdio.h>

void main(int argc, char *argv[]) {
int i;

for (i=0; i < argc; i=i+1) {
// Skip over first three arguments
if (i < 3) continue; // Jumps to ‘i=i+1’ above

printf(“Argument %d is %s\n”, i, argv[i]);
}

}

In a while loop, the continue statement returns to the top of the loop to once again evaluate 
the while-expression. This can lead to some unexpected errors:

#include <stdio.h>

void main(int argc, char *argv[]) {
int i;

i = 0;
while (i < argc) {

if (i < 3) continue; // Jumps to test ‘i < argc’ above

printf(“Argument %d is %s\n”, i, argv[i]);
i = i + 1;

}
}

This code doesn’t work! The problem is that the iteration ‘i=i+1’ is never executed since the 
continue statement jumps back to the while-expression.

In a do/while loop, the continue statement jumps to the bottom of the loop to evaluate the 
while-expression.

J
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Note that Java’s labelled continue statements (e.g., ‘continue outer;’) are not allowed in C. 
But see the goto statement in Section 3.10 below which can be used to implement this feature.

3.10 The goto Statement
The goto statement can be used to jump to any other statement at the same (or lower) level of 
nesting. That is, you can’t jump into the middle of a loop, and you can’t jump from one function 
to another, etc. For example:

#include <stdio.h>

void main(int argc, char *argv[]) {
int i;

goto ohletsjustskipit;

for (i=0; i<argc; i=i+1) {
printf(“Argument %d is %s\n”, i, argv[i]);

}
ohletsjustskipit: // This is a label
}

The goto statement above transfers execution to the label (declared by writing an identifier fol-
lowed by a colon), skipping all statements in between.

Note that Java does not have a goto statement. Why? The idea of simply jumping from one 
statement to another is not consistent with structured programming ideals. The abuse of this state-
ment in other languages (like BASIC) led to spaghetti programming, in which the flow of execu-
tion in a program would jump back and forth, making it difficult to understand and modify the 
program. The introduction of labelled break/continue statements as well as structured 
exception handling (try/catch) in Java have removed all justifiable needs for keeping goto 
in the language.

One of the main uses for the goto statement in C (some would say the only use) is to duplicate 
the functionality of labelled break/continue statements in Java. That is, we would often like 
to be able to either break or continue the non-inner-most loop. For example:

#include <stdio.h>

void main(void) {
int i,j;

for (i=0; i < 10; i=i+1) {
for (j=0; j < 10; j=j+1) {

if (2*i+j > 50) {
goto alldone; // Like a “double break”

}
}

}
alldone:
}

J

J
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A break statement instead of the goto above would only have terminated the innermost loop, 
proceeding to the ‘i=i+1’ iteration statement of the outermost loop, which is not the desired 
behavior.

Similarly, the goto statement can also be used to “escape” from a deeply nested structure in the 
case of an error condition:

void main(void) {
while (...) {

for (...;...;...) {
if (...) {

while (...) {
...
if (error) goto BigError;
...

}
}

}
}
goto AllDone; // Finished without errors

BigError:
// Handle errors here

AllDone:
}

In Java and C++, this type of escape mechanism is handled by structured exception handling 
using try/catch.

3.11 The return Statement
The return statement is used to immediately exit from a function and return to the function’s 
caller. For functions declared as returning a value, the return statement must be followed by an 
expression indicating the return value. The compiler may cast this value to the return type as nec-
essary. For functions declared as returning void, i.e., no value, the return statement must 
stand by itself.

Here is an example showing the use of the return statement in several locations in a subroutine.

long int factorial(int N) {
if (N < 2) {

return 1; // 0!==1, 1!==1
}
return N*factorial(N-1);

}

In general, good programming practice dictates that there should be few, preferably just one, 
return statements in a function. This makes debugging easier as the exit points of a function are 
more constrained. This means less work is required to ensure that a function does not return unex-
pectedly during a debugging session.
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4.0 Expressions and Operators
A C expression is composed of variable names, constants, function calls, and operators to com-
bine them. We have already encountered “obvious” expressions of the form ‘i < argc’.

4.1 Basic Arithmetic Operators
The operators +, -, /, and * perform addition, subtraction, division, and multiplication, as 
expected. Even at this level of simplicity, things can get interesting:

• What happens when we add an int to a float?
• What happens when we write 7/4?

4.2 Promotion and Casting
The answer to the first question above is given by the promotion rules in C, which state that when 
two quantities are involved in an expression, the “smaller” one is converted to the type of the 
“bigger” one. A float quantity can represent integers, but integers can’t represent reals. Thus, 

float is “bigger than” int.1 These promotion rules also determine the type of the overall 
expression.

For example:

int i = 2;
double f = 1.0;

f = f + i; // i is promoted to double type, expression is double type
i = i + 3; // both i and 3 are ints, expression is int type
i = f + 1; // ???

In the expression ‘f+i’, the integer variable i is promoted to a double and takes on the value 
1.0. This value is then added to f and the result is an expression of type double.

In the expression ‘i+3’ both operands are of integer type thus no promotion is necessary and the 
expression is of type int.

Now let’s look at ‘f+1’. The constant 1 is of integer type thus must be promoted to double type 
with value 1.0. The resulting expression is of double type, but we are trying to store this into an 
integer! This type of “reverse promotion” (demotion?) can result in a loss of data (how do we rep-
resent 3.5 as an integer?) so it requires more intervention (i.e., the compiler does not perform 
demotion).

We need to tell the compiler our intention to demote a double to an int using an operator 
known as a cast:

i = (int) (f+1); // double expression f+1 casted to int type

1. Note that this is an attempt to provide an intuitive explanation of promotion rules, which are in fact very 
clearly and thoroughly defined in reference texts. These rules, however, are lengthy and involved and it is 
suggested that the intuitive approach be your guide.
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In this cast, the real-valued quantity ‘f+1’ will have its fractional part discarded and the integer 
part stored in the variable i.

The answer to the second question above (“What happens when we write 7/4?”) is that we get the 
integer 1. Because both 7 and 4 are integers, the operation is of integer type and integer division is 
performed (i.e., reals are truncated to remove the fractional part). If we expect an answer of 1.75, 
then we must somehow indicate that real division is to be performed. Either one of the operands 
must be of real type for this to happen. For example:

• 7.0/4.0
• 7/4.0
• 7.0/4

A common mistake in arithmetic computations is to forget that promotion is only performed when 
necessary for a specific operation, not for the overall expression. For example, suppose we 
wanted to express a probability as a percentage, in which we have two integers heads and 
totalFlips. The percentage (a real number) is given by:

heads/totalFlips*100.0 // This is WRONG

This code won’t work. Assuming heads is less than totalFlips, the integer division of 
heads by totalFlips will be 0. This is promoted to a 0 of type double prior to multiplying 
by 100.0 but by then it’s too late.

We want to perform real division of two integers. We can use a cast to force one of the division 
operands to double type, thus causing both division operands to be of double type (the second 
one is automatically promoted):

(double)heads/totalFlips*100.0 // This is RIGHT

Another way to do it is to force promotion to double type as early as possible:

100.0*heads/totalFlips

In this case, the multiplication is performed first (associativity is left-to-right) thus promoting 
heads to double type.

4.3 More Arithmetic Operators
The modulo operator ‘%’ computes the remainder of dividing its two integer operands. For exam-
ple, ‘7 % 4’ is equal to 3.

The increment operator ‘++’ and decrement operator ‘--’ are shorthand ways of adding or sub-
tracting 1 from an integer-valued variable. For example, ‘i++’ is equivalent to ‘i=i+1’ and 
‘j--’ is equivalent to ‘j=j-1’.

The increment and decrement operators can be applied in both prefix and postfix form. The differ-
ence lies in what the value of the expression is (yes, the statement ‘i++’ is in fact an expression).
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Let’s look at an example:

int i,j;

i=3;
j = i++; // j=3, i=4

Note that the value of the expression ‘i++’ is the value of i before incrementing. Now consider:

int i,j;

i=3;
j = ++i; // j=4, i=4

With the prefix form of the operator, the value of the expression ‘++i’ is the value of i after 
incrementing.

4.4 Assignment Operators
It may bend your mind a bit to think of the statement ‘i=3’ as an expression with ‘=’ as an oper-
ator, but this is the reality. In C, just about everything is an expression (except for function/vari-
able declarations, flow control statements, and a few other things). The “statement” ‘i=3’ is 
actually an expression whose value is the left-hand-side (i.e., the variable i after the assignment is 
performed). Thus, the following is legal:

j = (i=5) + 3; // j=8, i=5

Just as ‘i++’ is a shortcut for ‘i=i+1’, there are shortcut assignment operators, too. For exam-
ple, ‘f *= 5.2’ is a shortcut for ‘f=f*5.2’. The full suite of shortcut assignment operators is 
shown in Table 2 on page 28.

4.5 Bitwise Operators
The bitwise operators can be used to operate on individual bits of an integer rather than on the 
number as a whole. For example, the bitwise AND operator ‘&’ computes the logic AND func-
tion on every bit of its operands:

char i,j;

i=0x0F; // In binary, i is: 00001111
j = i & 0xF8; // In binary, 0xF8 is: 11111000

// So i & 0xF8 is: 00001000

Thus j will have the value 8. The bitwise OR operator ‘|’ computes the logic OR function while 
the bitwise XOR operator ‘^’ computes the logic XOR function.

All of the above are binary operators, requiring two operands. The unary operator ‘~’ only takes 
one operand and computes the one’s complement. For example, ‘~0’ yields a result that has all 
bits set (the number of bits depends upon the number of bits in the int type).
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The bitwise shift operators ‘<<‘ and ‘>>’ shift all bits of the left-hand operand either left or right 
by the number of bits specified in the right-hand operand. For example:

char i = 0x80; // In binary, i is: 10000000
i = i >> 1; // Shift right by 1 bit: 01000000
i = i >> 5; // Shift right by 5 bits: 00000010
i = i >> 3; // Shift right by 3 bits: 00000000

The ‘<<‘ operator is fairly straightforward: all bits are shifted left and 0-bits shift in from the 
right.

The ‘>>’ operator is slightly more complicated in that its behavior depends upon whether we are 
operating on a signed or unsigned integer. For signed integers, the right-shift is arithmetic, i.e., the 
uppermost bit (the sign bit) is kept the same. For unsigned integers, the right-shift is logical, i.e., 
the uppermost bits are filled with 0’s. For example:

signed char i = -1; // In binary, i is: 11111111
unsigned char j = 255; // In binary, j is: 11111111

i = i >> 1; // i is: 11111111
j = j >> 1; // j is: 01111111

Java has the additional operator ‘>>>’ which is not present in C. This operator performs a logical 
right-shift (shifting in 0’s to the upper bits). Since Java does not support unsigned integers, this 
operator is required to support logical right-shifts in Java but is unnecessary in C.

4.6 Relational Operators

The relational operators (listed below) all return 0 if the relation is false and non-zero1 if true:

• <, >, <=, >=
• == (equality, note double-equals)
• != (non-equality)

4.7 Logical Operators
The unary logical negation operator ‘!’ returns non-zero if its operand is 0 and returns 0 if its 
operand is non-zero. Thus, the expression ‘! (a<b)’ is equivalent to ‘(a>=b)’.

The logical AND operator ‘&&’ returns non-zero if both its operands are non-zero quantities. 
This operator is frequently used to ensure multiple conditions are true. For example:

if ( (i >= 0) && (j >= 0) && (k >= 0) ) { ...

Similarly, the logical OR operator ‘||’ returns non-zero if either of its operands are non-zero quan-
tities.

1. Another example where the C language specification does not specify what this non-zero value should 
be. In most cases, truth is represent by 1, sometimes by -1. But falsity is always 0 in C.

J
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Note that ‘&&’ (logical AND) and ‘&’ (bitwise AND) are frequently confused leading to pro-
gram errors. A useful convention is to define the following:

#define AND &&
#define OR ||
#define NOT !

allowing us to write more readable (and less error-prone) statements:

if ( (i >= 0) AND (j >= 0) AND (k >= 0) ) { ...

Another aspect of the logical AND and OR operators is deferred evaluation (sometimes known as 
lazy evaluation). The basic concept is that if the result of the overall expression is certain at any 
point, the remaining components of the expression are not evaluated. Consider, for example, the 
assignments ‘i = 5’, ‘j = -5’, and ‘k = 10’. In the if statement above, the following would 
occur:

• The subexpression ‘(i >= 0)’ evaluates as true, thus the overall expression may be 
true. We now have to consider the next subexpression.

• The subexpression ‘(j >= 0)’ evaluates as false, thus the overall expression is defi-
nitely false (1 AND 0 AND 1 is false, i.e., 0).

• At this point, the whole expression’s value is known and the final subexpression ‘(k 
>= 0’) is irrelevant. Due to deferred evaluation, this expression is not evaluated!

Apart from saving some execution time, deferred evaluation can lead to some compact code. Con-
sider, for example, an attempt to divide by an unknown quantity that may be 0:

(denom != 0) && (f = f / denom);

What looks like an expression (and is) is actually equivalent to:

if (denom != 0) {
f = f / denom;

}

but is more compact. The reason this works is that if ‘(denom != 0)’ fails to be true, the actual 
division is not performed (due to deferred evaluation) since its value is irrelevant in the logical 
AND computation.

4.8 The Conditional Operator
The conditional operator ‘?:’ is like an embedded if/else/endif statement. Whereas the 
latter is a true statement and cannot be used in an expression, the conditional operator can. We 
have already seen the definition of the ‘max’ macro (written here without the safety parentheses):

#define max(x,y) (x > y ? x : y)
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The above definition leads to two equivalent statements:

z = max(x,y); // Statement 1
if (x > y) { // Statement 2

z = x;
} else {

z = y;
}

The syntax of the conditional operator is:

EXPR ? TRUE_CLAUSE : FALSE_CLAUSE

First, the EXPR expression is evaluated. If true, the value of the conditional operator is the result 
of executing the TRUE_CLAUSE. Otherwise, the value of the conditional operator is the result of 
executing the FALSE_CLAUSE. Note that both clauses must be “compatible” in type (again, 
there are a whole host of rules that govern this). Thus, the following would be illegal:

(i > 0) ? 5 : “Hello” // ILLEGAL

We cannot have this expression return integer type in one case and a string in the other. We can, 
however, mix integers and reals (for example) wherein standard promotion rules would apply.

4.9 The Comma Operator
A strange operator, the comma ‘,’ is simply used to evaluate multiple expressions as if they were 
a single expression. All expressions separated by a comma are evaluated, and the value (and type) 
of the expression is the value (and type) of the last expression. For example:

code = ((i > 0) ? 5 : (printf(“Error!\n”), 0));

The clause following the colon is an expression containing two sub-expressions separated by a 
comma. The first sub-expression (the call to printf) is evaluated and ignored, then the second 
expression (simply 0) is the result.

The most common use of the comma operator is in for statements allowing multiple initializa-
tions, tests, or iteration statements. Consider, for example, some compact code for reversing the 
bits in a 32-bit integer:

int reverse(int i) { // Assumes int is a 32-bit integer
int mask;
int rev;
int orvalue;
for (rev=0, mask=0x80000000, orvalue=1; 

mask != 0; 
mask = mask >> 1, orvalue = orvalue << 1) {

rev = rev | ((i & mask) ? orvalue : 0);
}
return rev;

}
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Note the use of the comma operator in both the initialization and iteration components of the for 
statement.

Java does not have the comma operator. This might be a good idea since the comma is also used 
to separate parameters in function calls. This dual use of the comma can be very confusing.

4.10 Operator Precedence and Association
There is an implied precedence of operators (for example, ‘2+i*3’ evaluates ‘i*3’ first, as 
expected) as well as an implied associativity. The associativity of an operator indicates the order 
in which multiple instances of the operator are evaluated. For example, ‘2*3*4*5’ is evaluated 
first as ‘2*3’, then the result multiplied by 4, then multiplied by 5. In other words, this is really 
‘((2*3)*4)*5. This is left-to-right associativity.

For an example of right-to-left associativity, as exhibited by the assignment operator, consider the 
statement:

i = j = k = 0;

This statement is computed using right-to-left associativity, as follows:

i = (j = (k=0));

Table 2 below summarizes the precedence and associativity of all operators in C. This table lists 
operators from highest to lowest precedence. Operators in a single group have equal precedence.

Mostly, things make sense with a few exceptions. For example:

mask<<1 + 1

is actually
mask << (1+1)

since addition has higher precedence than bit shifts. Be careful and use parentheses liberally.

5.0 Program Structure
At some point, placing all of your code in the main() function will become unwieldy. It will 
then be necessary to split your code into multiple functions. Once a source file starts accumulating 
many functions, it too will become unwieldy. At this point it will become necessary to split your 
code across multiple files. In this section we discuss the structure of a C program split across mul-
tiple source files, include files, and library files.

5.1 Declaring Functions
We have already seen an example of a function, the main() function. Other functions can be 
declared in the same file as the one with the main() function. Let’s look at an example:

#include <stdio.h>

J
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Table 2: Precedence and Associativity of C Operators

Operators Function Associativity

[]
()
.
->

postfix++
postfix--

Array dereference
Function call
Structure member dereference
Structure pointer dereference
Postincrement
Postdecrement

Left-to-right

++prefix
--prefix

sizeof()
&
*
+
-
~
!

Preincrement
Predecrement
Size in bytes of given type or variable
Address-of
Pointer dereference
Unary positive
Unary negative
One’s complement
Logical complement

Right-to-left

(type) Cast operator Right-to-left

*, /, % Multiply, divide, modulo Left-to-right

+, - Addition, subtraction Left-to-right

<<, >> Bit shifts Left-to-right

<, >, <=, >= Comparison operators Left-to-right

==, != Comparison operators Left-to-right

& Bitwise AND Left-to-right

^ Bitwise XOR Left-to-right

| Bitwise OR Left-to-right

&& Logical AND Left-to-right

|| Logical OR Left-to-right

?: Conditional operator (if-then-else) Right-to-left

=, *=, /=, %=, +=, -=, 
<<=, >>=, &=, ^=, |=

Assignment operators Right-to-left

, Comma operator Left-to-right
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double poly(double x) {
// Evaluate the polynomial:
// 4x^3 - 2x^2 + x + 5
// using Horner’s rule.
double val;

val = 4*x-2;
val = val*x + 1;
val = val*x + 5;
return val;

}

void main(void) {
int i;

for (i = -5; i <= 5; i++) {
printf(“(%d,%g)\n”, i, poly(i));

}
}

This program prints as ordered pairs the integers from -5 through 5 as well as the value of the 
polynomial (listed above) evaluated at these points. Note that there are two functions in this 
source file: poly and main. Any number of functions may be present in a source file, but the 
definition of a function must be known to the compiler prior to its invocation (in other words: 
define it before you use it).

Suppose we had swapped the two functions above, with the main function appearing before 
poly. The compiler would have reported an error: “Call to function ‘poly’ with no prototype”. 
This is because the compiler has not encountered the definition (i.e., the prototype) for poly 
prior to its use within the printf statement.

There are two ways to address this problem. First, and most obvious, define a function before 
using it. Second, use the extern keyword to introduce a function’s prototype before actually 
writing the code for it:

#include <stdio.h>

extern double poly(double); // Prototype only, no code

void main(void) {
// main code goes here

}

double poly(double x) {
// actual code for poly goes here

}

The extern keyword indicates an “external function prototype” so that the compiler knows this 
function’s return value and “signature” (i.e., the parameters and their types). The actual code for 
poly, of course, must match its prototype.
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This use of the extern keyword is most common in include files, which we discuss in Section 
8.2.

Only one function with a given name may be defined. Unlike Java, C does not support overload-
ing (i.e., two functions with the same name but different signatures).

5.2 Calling Functions
We have already seen many examples of calling functions and it should be fairly clear how this is 
achieved: the function’s name is followed by parentheses and some number of arguments.

One issue that does arise, however, is what happens when the expected type of a function param-
eter doesn’t match what is passed. Note in the example above that we passed an integer to the 
poly function but this function expected a double parameter. Is this an error? No, the standard 
promotion rules apply.

Note that there is an insidious behavior in the reverse direction: a mismatch in types will cause a 
silent demotion! If, for example, a function expects an integer but a double is passed, the dou-
ble is silently (i.e., without warning) casted to an integer!

5.3 Local Variables
All variables defined inside a function are local to that function. This means that other functions 
can’t access those variables, and the variables are only “alive” while the function is executing 
(i.e., their values don’t persist from one function call to the next).

An exception to the persistence issue above are variables declared with the static keyword. 
These variables do retain their value for the duration of the program. These variables are fre-
quently initialized and used either as counters or as flags to indicate whether the initialization of 
some process has occurred. For example:

void countme(void) {
static int firstTime = 1;
static int counter = 0;

if (firstTime) {
firstTime = 0;
printf(“This is the first time in countme\n”);

}
printf(“countme has been called %d times\n”, ++counter);

}

Had the two variables above not been declared static, they would have been initialized to 1 
and 0, respectively, upon every invocation of countme.

J
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5.4 Global Variables
Variables declared at file scope (i.e., outside any function) can be accessed by any function in the 
file. Like static local variables, these global variables persist for the duration of the program (until 
changed).

Global variables can be used to communicate from one function to another but this is not recom-
mended (that’s what function parameters are for!) A good use for global variables is to use them 
as type-safe constants. We can always use the preprocessor to write, for example:

#define PI 3.1415926536

but this is just a text substitution. It doesn’t tell the compiler we’re defining a real number. More 
type-safe is to write (as a global variable):

const double PI = 3.1415926536;

Then, any function in this file can make use of the variable PI and know that it’s intended to be a 
double quantity.

The const keyword indicates that the variable PI may never be modified. Attempting to assign 
to it will cause a compile-time error.

6.0 Advanced Data Types
Beyond the scalar-valued types of integers and reals, C supports arrays, structures, enumerated 
types, bitfields, and pointers.

6.1 Arrays
Arrays are very commonly encountered in C. They simply represent many quantities of the same 
type. For example:

int v[5];

represents 5 integers rather than simply 1 integer. These integers can be accessed as v[0], v[1], 
etc. up to v[4]. NOTE: Arrays are declared with the number of elements that they contain but 
the maximum element index is this number minus 1 (since array indices start at 0).

Note that the square brackets [] actually represent an operator (known as array dereference) 
which has a relative priority and associativity, as shown in Table 2 on page 28.

Java programmers should immediately note a difference. Arrays are declared directly with their 
given size rather than using a two-step process of declaring a reference to an array then using the 
new operator. But note that Java’s approach is really a use of pointers, as explained in Section 
6.3. In addition, C arrays are not objects. They don’t have methods, and most importantly, they 
don’t know their own size (i.e., there is no array.length method). For this reason, C arrays 
are not bounds-checked. Accessing an array element beyond the end (or before the beginning) of 
a C array may well crash the program rather than generate an orderly exception, as with Java.
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Here is an example, using arrays, of a function named polyN that evaluates an arbitrary-length 
polynomial given the coefficients of this polynomial in an array:

double polyN(double x, double coeffs[], int numCoeffs) {
int i;
double val = 0.0;

for (i=0; i < numCoeffs; i++) {
val = val*x + coeffs[i];

}
return val;

}

Note that array parameters in functions can not be declared with a size so that arbitrary-length 
arrays may be passed. However, we must also pass an extra parameter to indicate how many ele-
ments are actually in the array, since this is not a property of the array itself.

Two-dimensional (and higher-order) arrays may be declared as in this example:

int twod[5][3];

In this case (and all higher-order cases) array parameters must have all dimensions specified 
except possibly for the last. This makes arbitrary-size two-dimensional arrays difficult to pass as 
parameters (we generally just use pointers). The ability to define classes in C++ and Java that 
properly implement higher-order array behavior greatly improves our expressive power in this 
respect.

6.2 Structures
A structure represents a collection of variables bound together under one name. For example:

struct pixel {
int x,y,z;
double intensity;
double luminance;

};

The two words ‘struct pixel’ now behave as a built-in type, with certain restrictions. For 
example, we may declare a variable of this type:

struct pixel one_pixel;

or a whole array of them:

struct pixel allPixels[128];

We access the members of this structure using the member dereference operator ‘.’ (see Table 2 
on page 28 for this operator’s precedence and associativity). For example:

one_pixel.x + one_pixel.y + one_pixel.z
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For Java and C++ programmers, structures are simply classes without methods and with all vari-
ables public. Note, however, that C does not support assignment of structures. It is illegal to 
assign one structure variable to another. You must either copy each member one item at a time or 
perform a memory-to-memory copy (see Section 7.3).

6.3 Pointers
Ah, yes. Pointers. At last, we arrive at the most dreaded word in the lexicon of the C student. 
Pointers are indeed so dreaded that Java has completely done away with pointers and wrapped 
their functionality into the (admittedly safer) concept of references. C++, as a transitional step, 
has both pointers and references.

Pointers are important, however, because there is a close association between this data type and 
the underlying hardware architecture of digital computers. By distancing ourselves from the 
pointer concept, we may achieve fewer programming errors and fewer headaches, but we increase 
the distance between our code and “the bare metal.” This distance, in many engineering applica-
tions involving low-level hardware interactions, should be as small as possible.

Every variable in C occupies some memory. This memory resides at a certain address. A pointer 
variable is capable of storing the address of another variable. That’s it.

Here is an example:

int i=3;
int *iptr = &i;

The second line declares a pointer to an integer using the syntax ‘int *iptr’. The ‘*’ symbol 
in a variable declaration indicates a pointer type. The type ‘int’ in this declaration indicates that 
the variable iptr is a pointer to another variable that is of ‘int’ type.

Simply put, we declare that iptr will contain the address of an integer variable.

The declaration is completed by initializing iptr with the quantity ‘&i’. The ampersand ‘&’ is 
known as the address-of operator (see Table 2 on page 28). Once again, every variable in C occu-
pies some memory and this memory resides at a certain address. This address can be obtained 
with the address-of operator.

In our example, assume that the variable i represents the value 3 stored at location 0x1000. Then, 
the variable iptr has the value 0x1000; the variable i has the address 0x1000. What is the 
address of the variable iptr? We haven’t bothered to determine it, but we could always obtain it 
using the address-of operator: ‘&iptr’. This would give us a pointer to a pointer to an integer, of 
type ‘int **’.

After executing the following code:

*iptr = 5;
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(read as ‘set the contents of memory whose address is stored in iptr to 5’) we have done the 
same thing as:

i = 5;

In the above example, the ‘*’ operator is the pointer dereference operator (see Table 2 on 
page 28), also known as the contents-of operator. It may be helpful to think of this operator as the 
inverse of ‘&’.

Pointers are useful for very many things. As a simple use of pointers, consider the problem of 
returning more than one value from a function. Suppose we wanted to compute both the sum-of-
squares and sum-of-cubes of a set of numbers. It would be a shame to place these two computa-
tions in separate functions as we would be re-computing many quantities, leading to slower code. 
It would be more efficient to have a single function that returned both quantities. But how? One 
option is to declare a structure type to hold the result and return the structure. A more efficient 
way is as follows:

double sums(double values[], int howMany, double *sumOfCubes) {
double sumOfSquares;
int i;

*sumOfCubes = 0; // Dereference pointer to return value #2
sumOfSquares = 0; // Initialize return value #1
for (i=0; i < howMany; i++) {

double temp = values[i]*values[i];

sumOfSquares += temp;
*sumOfCubes += temp*values[i];

}
return sumOfSquares;

}

Note that we are indeed returning two values, one in the conventional way (sumOfSquares) 
and another via a pointer. Here is how we may call this function:

double testcases[5] = {1.0, 2.0, 3.0, 4.0, 5.0};
double squares, cubes;
squares = sums(testcases, 5, &cubes);

The third parameter to the sums function is a pointer to a double. This quantity must point to an 
existing double variable where we would like our sum-of-cubes result to go.

One problem with pointers is that small programming errors lead to big run-time errors. Imagine 
if we had written the following line in error, forgetting that sumOfCubes was a pointer:

sumOfCubes += temp*values[i]; // Should be ‘*sumOfCubes’

This would modify the address stored in sumOfCubes, not the dereferenced quantity. Worse, 
imagine if we had effected the same mistake at the initialization line:
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sumOfCubes = 0; // Intending to write ‘*sumOfCubes = 0;’

This will surely lead to a program crash later in the program as attempting to dereference the 
address 0 will wreak havoc. And whereas the first type of error will at least draw a compiler error 
(‘Illegal use of floating point’, since it makes no sense to increment a pointer by a real number) 
the second error is perfectly legal C. Not only will it lead to a run-time error but the actual error is 
downstream, i.e., it is a secondary effect and may occur very much farther in the program where it 
is very difficult to trace the root cause.

The moral: pointers are merciless. Simple errors in programming lead to big errors in the pro-
gram. Experience and discipline in programming are the best defense.

A suggestion is to always use a pointer variable’s name to indicate it is a pointer. For example, 
declaring the sums function as:

double sums(double values[], int howMany, double *sumOfCubesPtr)

reminds us whenever we use the variable that it truly is a pointer.

Another suggestion is to be a defensive programmer and check all function parameters prior to 
using them. For example:

#include <stdlib.h> // Defines exit() function

double sums(double values[], int howMany, double *sumOfCubesPtr) {
double sumOfSquares;
int i;

if (sumOfCubesPtr == 0) { // How did that happen?
printf(“Whoa there!\n”);
exit(1);

}
...

Null pointers (i.e., pointers with value 0) are a very common source of errors and catching them 

early can save a lot of time in debugging.1

A very common use of pointers is in representing strings, as discussed in Section 6.4 below.

Only a few operators can be applied to pointers. For example, it makes no sense to try to multiply 
or divide pointers. It is very common, however, to add or subtract quantities to pointers, or even 
add and subtract pointers from each other. A very interesting behavior in C is that adding an inte-
ger to a pointer adds a multiple of the pointer type, not the integer itself. For example:

char *charPtr; // Points to 1-byte quantities
int *intPtr; // Points to 4-byte quantities

1. For advanced programmers, investigate the assert function in the standard C library. This can be a 
very effective debugging aid.
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double *doublePtr; // Points to 8-byte quantities

charPtr++; // charPtr is now higher by 1 address
intPtr++; // intPtr is now higher by 4 addresses
doublePtr++; // doublePtr is now higher by 8 addresses

While perhaps counterintuitive at first, this behavior is very useful for allowing pointers to “step 
through” arrays. For example, this function sets all the elements of a passed array to 0:

void setTo0(int arr[], int N) {
int i;
int *iptr;

for (i=0, iptr=&arr[0]; i < N; i++, iptr++) {
*iptr = 0;

}
}

There are better ways to do this (see the memset function in the standard C library) but this 
example illustrates the point. Incrementing iptr by 1 does not add 1 to the address in iptr, it 
adds whatever the size of an ‘int’ is, thus advancing from one element of arr to the next.

Note that pointers can also be used to reference structure variables. For example:

struct pixel {
int x,y,z;

};
struct pixel aPixel;
struct pixel *pixelPtr;

pixelPtr = &aPixel;

There are two ways to access the members of a structure pointed to by a pointer variable. We can 
dereference the pointer and use the membership operator ‘.’ as before, or use the more compact 
pointer membership operator ‘->’. For example, the following expressions are equivalent:

(*pixelPtr).y;
pixelPtr->y;

The form of the second expression is preferred for legibility.

6.4 Strings
In C, strings are simply arrays of char type that end with a 0 byte. Strings are not objects, as in 
Java. Most commonly, however, strings are referred to according to the address of the first char-
acter in the array, thus invoking the concept of pointers.

Here is a simple illustration of string usage in C. This program fills in each character of a string, 
one character at a time, then prints the whole string.

#include <stdio.h>
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void main(void) {
char hello[8]; // ‘hello’ is an 8-byte string
hello[0] = ‘H’;
hello[1] = ‘e’;
hello[2] = ‘l’;
hello[3] = ‘l’;
hello[4] = ‘o’;
hello[5] = ‘!’;
hello[6] = ‘\n’;
hello[7] = 0;
printf(“%s”, hello);

}

We make the following observations:

• Constants of type char may be written in single quotes. For example, the constant 
‘H’ is equivalent to writing the constant 0x48. Only one character may appear 
between the single quotes, with the exception of escape sequences (like ‘\n’ that indi-
cates the end-of-line character.

• The last element of the char array must be 0 in order for the array to be properly 
treated as a string. Omitting this 0 element (referred to as the null byte of the string) 
will lead to incorrect behavior and possibly program crashes. Remember to always 
declare character strings with one extra character to hold the null byte.

• A string in C is nothing more than an array of char type. Note that not all arrays of 
char type need be interpreted as strings. An array of char type can be used to hold a 
set of 8-bit values that do not have a textual interpretation.

6.4.1 String Pointers
Take a look at the printf statement in the above example again. It uses the name of the array 
variable hello but without any square brackets. What does this mean?

In C, writing the name of an array without square brackets is equivalent to writing the address of 
the array’s first element. Thus,

hello == & (hello[0])

is true. We indicated to printf the string we wanted to print by giving the address of the first 
character. We could also have written:

printf(“%s”, &hello[0]);

This is a very important concept. In C, strings are passed from one function to another using the 
address of the first character, not as the whole array.

Passing the entire array would be very wasteful. Simply passing the address of the array is much 
more efficient and also allows the array to be modified by any function in-place, rather than 
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returning a modified copy of the array. Note that this concept applies to any C array, not just 
strings: arrays are passed from one function to another using the address of the first element.

The fact that we are passing the address of a string means we are actually passing a pointer. What 
is the type of the expression ‘& hello[0]’? It is an address of a char so it is a pointer-to-
char type, or ‘char *’. For example:

char *helloPtr = & hello[0];
printf(“%s”, helloPtr);

is also correct, although redundant since helloPtr is exactly equivalent to hello (without 
square brackets).

Let’s look at another example that demonstrates the use of string pointers. This program prints 
each one of the characters of the string “Hello world!” on a separate line.

#include <stdio.h>

void main(void) {
const char *helloPtr = “Hello world!\n”;
while (*helloPtr != 0) {

printf(“%c\n”, *helloPtr);
helloPtr++;

}
}

There are some new concepts in this example. First, consider the line:

const char *helloPtr = “Hello world!\n”;

We are declaring the variable helloPtr as storing the address of a character. Thus, we can use 
this variable to point to a string (array of characters). In this declaration we are also initializing the 
contents of this variable to point to the string “Hello world!\n”. This string is a character 
array that will be stored in memory somewhere and whose address (of the first character) will be 
stored in helloPtr.

Finally, declaring helloPtr as a ‘const char *’ type indicates that this is a pointer to 
memory that should not be changed (i.e., it is a pointer to constant characters, not writable charac-
ters). The compiler would generate an error if you attempted to modify memory through the 
helloPtr pointer.

NOTE: Writing a string in double-quotes automatically sets aside space for this string in memory. 
The compiler also automatically includes the null byte at the end of the string. Thus, the string 
“ABC” is a 4-character string. There are three characters plus a null byte. Also, the string in dou-
ble-quotes is a valid C expression. The type of this expression is ‘const char *’.

Now let’s look at the first statement in the while loop:

while (*helloPtr != 0) {
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In plain English, this expression tests to make sure the pointer helloPtr is not the address of a 
character with value 0, i.e., the null byte of a string. That is, we are testing to see if we’re at the 
end of the string. The expression ‘*helloPtr’ dereferences this pointer to look at the actual 
character that the pointer is pointing to.

The next line:
printf(“%c\n”, *helloPtr);

causes printf to print a single character (this is what the %c format specifier does) followed by 
a newline. The character to print is ‘*helloPtr’, that is, the actual character that the pointer is 
pointing to.

Note that helloPtr is of type ‘const char *’. Dereferencing this pointer with the expres-
sion ‘*helloPtr’ gives us a value of type ‘const char’, i.e., a single character.

Finally, the statement:
helloPtr++;

advances the pointer to point to the next character in the string. The loop terminates once this 
pointer points to the null byte (i.e., end of the string).

6.4.2 String Operations
Remember, strings are not objects and do not have methods. We operate on strings by calling 
functions that expect string pointers as arguments. Here, for example, is a function that prints each 
character of a string on a separate line.

#include <string.h>

void printChars(const char *str) {
int i;

for (i=0; i < strlen(str); i++) {
printf(“%c\n”, str[i]);

}
}

First, we must include the string.h include file to declare the external functions that operate 
on strings (these functions are in the standard C library).

The parameter of the printChars function is a pointer to a string, and we use the const key-
word to indicate that we will not be modifying this string in the function.

In the for statement, note that we are calling the strlen() function and passing the string 
pointer parameter to it. This function computes the length of a string, i.e., how many characters 
are in the string before the null byte.
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Finally, in the printf statement we are accessing each character of the string individually using 
the array dereference operator (square brackets). It may be confusing to treat a pointer variable as 
an array, but recall that they are virtually equivalent. In C, it is true that:

str[i] == *(str + i);

Thus, just think of the array dereference as first advancing the pointer forward by the given num-
ber of elements, then looking at the contents of memory at that address.

6.5 Enumerated Types
The enum keyword introduces an enumerated type. Here is an example:

enum direction {
North, South, East, West

};

We can now declare a variable of this type:

enum direction currentDirection;

This variable can only take on one of the four constants listed in the type declaration: North, 
South, East, and West. The compiler automatically creates these constants and assigns inte-
gers to them, beginning with ‘North=0’ and ending with ‘West=3’.

Strictly speaking, enumerated types are not necessary. We could have mimicked the above with 
preprocessor constants and a variable of type int:

#define North 0
#define South 1
#define East 2
#define West 3

int currentDirection;

The enumerated type, however, is more type-safe. For example, the statement:

currentDirection = 5;

would lead to a compile-time error (as it should) in the first example but not in the second. Using 
the enumerated type also prevents programming errors that arise from mis-typing the #define 
statements (suppose we mistakenly used the same number for two constants).

6.6 Bitfields
Bitfields can be very useful for accessing a set of bits in an integer rather than the whole integer 
itself. Most often, bitfields are used within structures, like this:

struct init_register {
int regbase:4; // Lower 4 bits
int rambase:4; // Next 4 bits
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} iReg;

Writing to each structure member only modifies 4 bits of the iReg structure variable. For exam-
ple:

iReg.regbase = 0xC;
iReg.rambase = 0x1;

These two statements together modify 8 bits of data, but only 4 bits at a time.

Bitfields can be very useful for mapping the structure of a hardware register to C variables. The 
example above mapped out the two 4-bit fields of the 68HC11 INIT hardware register.

6.7 Unions
Unions are very similar to structures in appearance but behave quite differently. Each member of 
a union occupies the same memory space as the other members. This allows the union to act as a 
sort of adapter to treat the same memory contents as two (or more) different types. For example, 
suppose we sometimes wanted to access a 16-bit hardware register as a single 16-bit short 
quantity and sometimes as two 8-bit char quantities. We could use the following declaration:

union timerReg {
short timer;
struct timerBytes {

char timerLO;
char timerHI;

};
} theTimer;

The first member of this union is the 16-bit quantity timer. The second member of this union, 
occupying the same memory as timer, is the 16-bit structure named timerBytes, which has 
two 8-bit members, timerLO and timerHI. We now have two ways of writing to this hardware 
register:

theTimer.timer = 0x1234; // One way to do it
theTimer.timerBytes.timerHI = 0x12; // Another way to do it
theTimer.timerBytes.timerLO = 0x34;

Note that this sort of operation is not portable across hardware architectures as it depends upon 
word sizes and the endianness of the platform.

7.0 Advanced Programming Concepts

7.1 Standard I/O
We have made extensive use of the function printf throughout our examples so far. This func-
tion belongs to a class of functions known as the standard I/O component (or stdio) of the stan-
dard C library. All of these functions operate on I/O streams declared as type ‘FILE *’ (the type 
FILE, along with the stdio functions, are declared in the system header file stdio.h).
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In this section, we explore some of the remaining standard I/O functions along with example 
usage.

7.1.1 Opening Files
The fopen function can be used to open a file on disk and prepare it for reading or writing. This 
function takes a string that indicates the file name and returns a quantity of type ‘FILE *’ that 
can be used in other standard I/O functions. Here is an example:

#include <stdio.h>

void main(void) {
FILE *file;

file = fopen(“c:\\junk.txt”, “wt”);
fprintf(file, “This is junk\n”);
fclose(file);

}

The first parameter to fopen is the name of a file. It may or may not include path components 
(e.g., “c:\\”). If not, the file is assumed to be in the current working directory. Note that the dou-
ble-backslash in the file name is used to achieve an actual single-backslash since backslashes 
introduce escape sequences (like \n) in C strings. On Unix-like systems, the regular slash ‘/’ is 
the path separator (and in fact, this should work on Windows systems as well).

The second parameter to fopen tells this function what we want to do with the file: open it for 
reading, writing, both reading and writing, etc. as well as whether the file is a binary file (‘b’ suf-
fix in the string) or a text file (‘t’ suffix in the string). The parameter “wt” indicates that we want 
to open the file for writing (overwriting any existing file by the given name) and it will be a text 
file.

The fopen function either returns a valid file pointer or it returns 0 to indicate an error condition. 
All file pointers created using fopen must be closed using fclose, as in the example above, 
when no longer needed.

7.1.2 Writing to File Pointers
Once a text file has been opened for writing using fopen, data can be written to the file using the 
fprintf function, as in the above example. Note that fprintf looks very much like the 
printf function we have been using, except it takes an extra parameter at the front of the 
parameter list: the file pointer. The format string and remaining parameters of fprintf are 
described in detail in any C reference text or help file.

Single characters may be written to files with fprintf and the %c format specifier, or with the 
fputc function (consult a reference for usage information).

Binary files are written using fwrite instead of fprintf. Consult a C reference text for the 
usage of this function.
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7.1.3 Reading from File Pointers
There are several ways of reading data from a text file. The fgets function reads one text line of 
the file at a time. The fscanf function attempts to read one data value from the text file. We 
illustrate both of these methods with examples below.

First, let us examine a program that counts the number of lines in a text file that begin with the ‘#’ 
character.

#include <stdio.h>
#include <stdlib.h>

void main(void) {
int numLines = 0;
char lineBuffer[80];
FILE *file = fopen(“c:\\inputfile.txt”, “rt”);

if (file==0) {
printf(“Cannot open input file\n”);
exit(1);

}

while (fgets(lineBuffer, 80, file)) {
if (lineBuffer[0] == ‘#’) {

numLines++;
}

}
printf(“%d lines began with #\n”, numLines);
fclose(file);

}

The fgets function reads one text line from the file and stores it in the string pointed to by its 
first argument. Space for the string must have been set aside previously, either with a character 
array (as in the example) or via dynamic memory allocation (see Section 7.2). The maximum 
number of characters to read is given by the second argument and prevents the character array 
from overflowing due to long lines in the input file. When the end of the file is reached, fgets 
returns 0 and the while loop terminates.

Now, let us examine a program that uses the fscanf function to read data values rather than 
entire lines. This program assumes that the input file contains some number of floating-point val-
ues written as text numbers, e.g., “2.345”. All of the numbers are separated by whitespace (i.e., 
either spaces, tabs, or newlines). For each number, the program prints its value to the screen.

#include <stdio.h>

void main(void) {
FILE *file;
double value;

file = fopen(“infile.txt”, “rt”);
while (fscanf(file, “%lf”, &value) == 1) {

printf(“Value: %f\n”, value);
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}
if (! feof(file)) {

printf(“ERROR: Malformed floating-point value\n”);
}

}

The format of the fscanf function is:

fscanf(FILE *, “FormatString”, &var1, &var2, ...);

The first parameter is a file pointer, as returned by fopen. The second parameter is a format 
string (see a reference manual or help file; this format string is interpreted in essentially the same 
way as the one for printf). The remaining parameters are pointers to the variables that will 
hold the values to read. Note that in the example above we used the address-of operator ‘&’ to pro-
vide a pointer to the variable ‘value’ which will hold the floating-point quantity read from the 
file.

The fscanf function has a return value: the number of input values successfully interpreted 
according to the format string. In our example, there was one format specifier in the string, indi-
cating we were expecting a single value at a time. The return value should be 1, then, to indicate 
that we converted some text in the file to a floating point number. If the return value is less than 1, 
it indicates there was an error and we should not trust the contents of the ‘value’ variable.

There are two primary ways in which the fscanf function could fail. First, we may have 
reached the end of the file. In this case, the feof function (see example above) can be used to test 
for this case, which is not an error as it simply lets us know we’ve run out of data. Second, we 
may encounter something in the input file which cannot be converted to a real number. For exam-
ple, encountering a string of letters would cause fscanf to fail, since it has been instructed to 
expect a floating-point number. In the example above, if fscanf fails to return 1 and we are not 
at the end of the file, we assume that the input file contained something other than a real number 
at the point of failure.

Single characters may be read from a file using the fgetc function (consult a reference for 
details).

Binary files are read using the fread function. Consult a C reference text or help file for the 
usage of this function.

7.1.4 The stdin/stdout/stderr Streams
There are three standard I/O streams that have already been opened by the time a program runs. 
The first, called stdin, is a text file pointer that can be used for reading (i.e., fscanf, fgets, 
etc.) It represents the user’s keyboard, not a true “file”. Thus, characters typed at the keyboard can 
be read by calling standard I/O input functions on the file pointer stdin. For example, here is a 
subroutine that expects the user to enter an integer at the keyboard:

#include <stdio.h>

int getInteger(void) {
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int value;

while (1) {
printf(“Enter an integer: “);
fflush(stdin);
if (fscanf(stdin, “%d”, &value) == 1) {

return value;
}
printf(“That was not a valid integer. Try again.\n”);

}
}

The purpose of the call to fflush is to “flush” the stream, i.e., remove anything that may be in 
it. This will ensure that there are no characters left hanging around from the user’s previous typ-
ing.

Similarly, stdout is a text file pointer that can be used for writing to the user’s console. You can 
use fprintf to write the file pointer stdout. Note that this is equivalent to using printf 
without the file pointer argument. That is, the following are equivalent:

fprintf(stdout, .....);
printf(.......);

Finally, stderr is similar to stdout but it is generally used for reporting errors, whereas 
stdout is used for printing non-error information (data, etc.)

7.2 Dynamic Memory Allocation
It is often the case that the amount of storage required for a variable is not known at compile time. 
For example, consider a program that must sort a file containing real numbers, but it is not known 
how many numbers there are in the file. The first line in the file, however, could be an integer 
indicating how many numbers to expect. Still, it is not possible to declare an array that can be 
guaranteed to hold as many real numbers as required without imposing an arbitrary limitation on 
the program.

The solution to these types of situations is to first determine how many elements in the array are 
needed (i.e., how much storage is required) then allocate space for the array based upon this num-
ber. This can be accomplished using pointers and the malloc set of functions in the standard C 
library. These functions are declared by including the <stdlib.h> system include file.Here is 
an example that reads some number of real numbers from a file where the file’s first line contains 
the number of real numbers that follow.

#include <stdio.h>
#include <stdlib.h>

void main(void) {
double *reals; // Array size not yet known
int numReals; // Number of numbers to read
int i;

FILE *file = fopen(“numbers”, “rt”);
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if (file == 0) { errorHandling(); }

if (fscanf(file, “%d\n”, &numReals) != 1) { errorHandling(); }

reals = (double *)malloc(numReals*sizeof(double));
if (reals == 0) { errorHandling(); }

for (i=0; i < numReals; i++) {
if (fscanf(file, “%g”, &reals[i]) != 1) {

errorHandling();
}

}
fclose(file);

... // Do something useful with reals array

free(reals);
}

We declared an array of unknown size by writing ‘double *reals’. Thus, we are simply 
declaring a pointer variable, not pointing to anything at the moment. Once we know how many 
real numbers we need space for, we can dynamically allocate that space using the malloc func-
tion. This function takes as its parameter some number of bytes and returns a pointer to the allo-
cated memory.

The fact that malloc needs to know how many bytes we need to allocate means we must pass it 
the expression ‘numReals*sizeof(double)’. This expression multiplies the number of 
double quantities we need by the number of bytes occupied by a double. The C operator 
sizeof() returns the number of bytes occupied by any type, including user-defined types (see 

Section 7.4)1.

The return type of malloc is ‘void *’, meaning it is a pointer to memory of unknown type. 
This must then be cast to the appropriate type using the cast operator, as shown above. The mal-
loc function returns 0 if it was unable to allocate the requested memory. This condition should 
always be checked, as in the example.

After a successful call to malloc, the reals pointer can now be treated as an array. The first 
element read in is reals[0], then reals[1], etc. all the way up to reals[numReals-1].

Memory allocated with malloc must be returned to the operating system using the free func-
tion. This function takes as its parameter a pointer previously allocated using malloc.

The differences between dynamic memory allocation in C and Java are great. Allocating a 
dynamic array of reals in Java is achieved simply by ‘reals = new double[numReals]’. 
Furthermore, there is no need to call a free function as memory is automatically reclaimed (i.e., 
garbage collected) when it is no longer used. The low-level dynamic memory allocation approach 

1. Note that sizeof() is truly an operator, not a function call. It is an operator that is evaluated at compile 
time, not run time.

J
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in C has been the cause of innumerable program errors. Calling free with the same pointer 
twice, for example, is an excellent way to crash a program.

The approach in Java makes life much simpler for the programmer. It is not without cost, how-
ever. Once again, it is a tradeoff between control over the underlying hardware versus simplicity. 
In C, allocated memory is freed only when the program so dictates. In Java, a garbage collector 
thread runs “every so often” to clean up memory. In an environment where timing is important, it 
may be quite inappropriate for this thread to run at certain times. More things happen behind the 
scenes in Java, where the programmer has less control, while C gives the programmer nearly 
absolute control over the runtime environment.

There are two variants of malloc that may also be useful. The calloc function also allocates 
memory but it ensures that the memory is zeroed-out. The realloc function attempts to take a 
pointer to previously-allocated memory and resize the memory block (either bigger or smaller).

7.3 Memory Manipulation
A set of functions in the standard C library known as the buffer manipulation functions allow very 
low-level control over a computer’s memory. These functions are declared by including the sys-
tem header file <string.h>. For example, here is an example that fills the contents of memory 
locations 0x100 through 0x1FF with the constant 0x55:

memset((void *)0x100, 0x55, 256);

The first parameter to memset is an address (type ‘void *’) of unspecified type. The second 
parameter is the byte to use to fill the block of memory. The third parameter is the number of 
bytes to write beginning at the given address.

This low-level memory interface can also be used to copy memory from one location to another. 
This is necessary, for example, when attempting to assign one structure variable to another. Sup-
pose we have the following declarations:

struct {
int x,y,z;

} pixel1, pixel2;

C does not support direct assignment of one structure variable to another:

pixel2 = pixel1; // ILLEGAL!

We can, however, achieve the same effect by simply copying the contents of memory from one 
variable to the other:

memcpy(&pixel2, &pixel1, sizeof(pixel2)); // LEGAL

The first parameter to memcpy is an address (type ‘void *’) indicating the destination of the 
copy operation. The second parameter is an address indicating the source of the copy operation. 
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The third parameter is the number of bytes to copy. Once again we use the sizeof operator to 
return the number of bytes occupied by a variable (or type).

Note that the memory functions operate very similarly to string functions (e.g., compare the oper-
ation of memcpy and strcpy). The difference is that the string functions all expect to operate on 
null-terminated strings. The memory functions operate on blocks of memory that are not neces-
sarily null-terminated (and may, in fact, contain multiple null bytes) and the length of the memory 
block must be specified.

A final caveat: the memcpy function does not work when the source and destination ranges over-
lap. In this case, the memmove function (same interface as memcpy but generally a little slower) 
must be used. For example, here is a function that removes the first element of an array and shifts 
the remaining elements down to take its place.

#include <string.h>

void removeHead(void *array, int numElements, int elementSize) {
memmove(array, 

(char *)array+elementSize, 
(numElements-1)*elementSize);

}

The source of the memory movement is the second element of the array, i.e., the starting address 
of the array plus the number of bytes in 1 element. Note the expression:

(char *)array + elementSize

We cannot add integers to void pointers (since the size of the array type is unknown). We must 
cast the pointer to type ‘char *’ so that adding elementSize to it increments the pointer by 
this many bytes. Recall that the expression ‘array+N’ is equivalent to ‘&array[N]’, but only 
when the type of the array is known (i.e., array is not a ‘void *’).

7.4 Declaring New Types
C has primitive support for declaring new types. The typedef keyword can be used to attach a 
name to an existing type, which may make the program more readable. The basic usage of a 
typedef declaration is:

typedef known_type new_name;

For example, here is an attempt at improving portability by using new type names for integers 
with a known bit width.

#ifdef INTS_ARE_SHORT
typedef int Int16; // 16-bit integers
typedef long Int32; // 32-bit integers
#else // INTS_ARE_LONG
typedef short Int16; // 16-bit integers
typedef int Int32; // 32-bit integers
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#endif

Using the type Int16, for example, to declare a variable guarantees that this variable occupies 
16 bits, regardless of the underlying hardware platform. This assumes that the constant 
INTS_ARE_SHORT has been defined (using #define) on platforms with 16-bit integers and 
left undefined on 32-bit platforms.

Another common use of typedef is to name structures so that the struct keyword need not 
be a part of the type. For example:

typedef struct loc3d {
int x,y,z;

} Location3D;

The known type in this case is the structure type while the new name for this type is 
Location3D. Thus, the following two declarations are identical but the second is more legible:

struct loc3d aPixel;
Location3D aPixel;

The final use for typedef is to build up a complex type out of simpler types. The C language 
supports extremely complicated types (e.g., arrays of pointers to arrays of arrays of...) but these 
types can be very difficult to declare properly. Suppose we wanted to declare a pointer to an array 
of pointers to 5-byte integer arrays. We can build it up one type at a time:

typedef char FiveByteArray[5]; // A 5-byte array type
typedef FiveByteArray *FiveByteArrayPtr; // Pointer to 5-byte arrays
typedef FiveByteArrayPtr *FiveByteArrayPtrPtr;

// Array of pointers to 5-byte arrays
typedef FiveByteArrayPtrPtr *FinalType;

7.5 Pointers to Functions
An extension of the concept of the typedef keyword as explained in Section 7.4 is the defini-
tion of functions as types. In C, functions are first-class objects in that they can be stored in vari-
ables, passed as parameters, etc. Why would you want to do this? 

A concept known as generic programming attempts to separate data structures from the functions 
that operate on them. For example, finding the smallest entry in an array, or a linked list, or a tree, 
etc. represents three different functions that implement essentially the same algorithm: check for a 
new minimum, get the next value in the data structure, and repeat. The fundamental algorithm 
does not depend upon whether the data is stored as an array, or a linked list, or a tree. That is, the 
data structure is separate from the algorithm, and the same algorithm, once developed and tested, 
should be reusable on a wide variety of data structures.

The C++ language implements generic programming by its use of the Standard Template Library, 
or STL. In C, we can use pointers to functions to try and implement some sort of generic program-
ming. For example, one of the functions in the standard C library, qsort, implements a quicksort 
sorting algorithm that works on a wide variety of data structures (as long as they are stored as an 
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array). This function requires several parameters: a pointer to where the data to be sorted resides, 
the size of each element in the array, the number of entries in the array, and the final element, a 
pointer to a compare function.

It is in the compare function (written by the user) that the specific nature of the data structure is 
reflected. This function is passed two pointers, each pointing to one element of the data structure. 
The compare function must return -1 if the first element is “less than” the second (in some sense), 
0 if they are equal, and 1 if the first element is “greater than” the second. The qsort function, 
then, uses this return value to effect the algorithm; the inner details of the data structure are 
abstracted out.

We can declare the type of this compare function compactly as:

typedef int (*CompareFunction)(void *, void *);

This declares the new type CompareFunction which is a pointer to a function taking two 
parameters (both void pointers) and returning an integer. We can now select from among multi-
ple compare functions:

int func1(void *p1, void *p2) {
...

}
int func2(void *p1, void *p2) {

...
}

CompareFunction whichFunc = func1;

Note that simply writing the name of a function (e.g., ‘func1’) is an expression of type ‘pointer 
to function’. We can then invoke the function as follows:

int return_value;
return_value = (*whichFunc)(p1, p2);

Admittedly, this is highly esoteric and unlikely to be useful to new students of the language. We 
hope, however, that the power of C is becoming apparent despite its starkness and often-confus-
ing pointer concept.

7.6 Command-Line Parameters
The prototype of the entry point of a C program is written as:

int main(int argc, char *argv[])

Let us consider how to interpret the parameters of the main function.

The first parameter argc is simple: it simply indicates the number of command-line parameters. 
If the compiled program is executed as follows:



The C Cheat Sheet Revision 1.0 September 5, 2000

Copyright © 2000 Andrew Sterian 51

myprogram -o stuff file

then argc would be 4. The name of the program itself (i.e., myprogram) is the first parameter 
of the argument list. Thus, a C program can discover the name by which it was invoked (a trick 
used by sneaky programmers to modify a program’s behavior simply by creating several links of 
different names to the same executable).

The remaining parameters in the example above are the strings ‘-o’, ‘stuff’, and ‘file’. 
These strings, as well as the first parameter (the program name) ‘myprogram’ are all available in 
the parameter argv.

The argv parameter is an array of string pointers. For example, argv[0] is of type ‘char *’. 
We recognize this as (possibly) a pointer to the first character of a null-terminated string. Indeed, 
argv[0] is a pointer to the string that is the first parameter (the program name). The next ele-
ment in the array, argv[1] is also of type ‘char *’ and describes another string: the second 
parameter (‘-o’ in the example above).

Thus, we see that the argv array extends from argv[0] through argv[argc-1], with each 
entry being a pointer to a null-terminated string. Here is the example program from page 16 that 
prints each command line parameter passed to it:

#include <stdio.h>

void main(int argc, char *argv[]) {
int i;

for (i=0; i < argc; i=i+1) {
printf(“Argument %d is %s\n”, i, argv[i]);

}
}

Java uses a similar prototype for the main function except that the argv parameter is an array of 
String objects. Since array sizes can be obtained in Java using the array.length method, the 
argc parameter is not required.

8.0 Multi-File Programs
It is possible to spread a C program across multiple source files. The compiler, however, only 
compiles one file at a time. Any functions declared in one source file but used in another must 
somehow make themselves known to the latter. In this section we discuss the standard techniques 
of splitting a program’s functions and variables across multiple files.

8.1 Basic Concepts
Let us extend the example presented in Section 5.1 on evaluating a polynomial. Suppose we 

wanted to define a function poly4 that could evaluate any 4th order polynomial with arbitrary 
coefficients. We feel that this function is separate enough from the goings-on of the main program 
that we should put it in its own file. We will implement the following:

J
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• A function called poly4coeff that allows the caller to set the coefficients of the 
polynomial. Presumably, the coefficients will be reused many times so it is more effi-
cient to set them once rather than passing them every time.

• The function poly4 to evaluate the polynomial with the coefficients set by 
poly4coeff.

• A variable poly4calls indicating how many times we’ve called poly4. This may 
be useful in profiling our code (i.e., estimating the time spent in various sections of the 
program).

Here is one possible implementation of the above, all as part of the file poly4.c:

int poly4calls = 0;

static double C1, C2, C3, C4; // The coefficients

void poly4coeff(double c1, double c2, double c3, double c4) {
C1 = c1;
C2 = c2;
C3 = c3;
C4 = c4;

}

double poly4(double x) {
double val;

poly4calls++;

val = C1*x + C2;
val = val*x + C3;
val = val*x + C4;
return val;

}

What may we learn from this example?

1. The variable poly4calls is a global variable. We need its value to persist across multiple 
calls to poly4. We also need this variable to be accessible outside of poly4 since other 
functions may want to know how many times poly4 has been called. This means we can’t 
make poly4calls a static local variable (i.e., put it inside poly4).

This global variable, then, is a form of communication between two (or more) files. The 
poly4.c file modifies this variable and other functions in other files presumably inspect its 
value. There is nothing preventing other functions from modifying poly4calls, however, 
which would lead to program errors. The principle of information hiding or encapsulation in 
object oriented languages like C++ or Java is intended to avoid these problems (we can also 
do it in C using functions to hide the variable).
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2. The constants C1, C2, C3, C4 are also global variables. We need these variables to persist 
from the call to poly4coeff until poly4 is called. Note, however, that unlike 
poly4calls, these 4 constants are also declared with the static keyword.

Unfortunately, static here means something slightly different than static applied to 
local variables. A global variable declared static is not accessible in functions outside the 
file. Only the functions defined in the file poly4.c can inspect or modify these variables 
(which is exactly what we want).

As a brief summary of the static keyword, consider the following table that compares the 
scope (i.e., where the variable is accessible) and persistence of a variable:

In summary, local variables always have function scope. The static keyword determines 
whether or not they are persistent. Global variables are always persistent. The static key-
word determines whether they have program scope (i.e., accessible anywhere) or file scope.

Finally, the static keyword can also be applied to functions. They behave the same as for 
global variables, i.e., they prevent the function from being visible outside of the file. Presum-
ably, static functions are “helper” functions only intended for use within the file.

Now let’s use our new functions. Consider the file named main.c with the following contents:

#include <stdio.h>

// Defined in poly4.c
extern int poly4calls;
extern void poly4coeff(double c1, double c2, double c3, double c4);
extern double poly4(double x);

void main(void) {
int i;

poly4coeff(4.0, -2.0, 1.0, 5.0);
for (i=-5; i<=5; i++) {

printf(“(%d,%g)\n”, i, poly4(i));
}
printf(“We called poly4 %d times.\n”, poly4calls);

}

Table 3: Persistence and Scope of Global and Local Variables

static
Not

static

Local Variables • Function scope
• Persistent

• Function scope
• Not persistent

Global Variables • File scope
• Persistent

• Program scope
• Persistent
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We can create the final program by compiling both files at the same time:

bcc32 -epoly4test.exe main.c poly4.c

Remember that any variable or function must be declared before it is used. This is why we had to 
include the three extern lines in the main.c file above. Note that an extern declaration of 
the constants C1 through C4 was not included in main.c. These constants are private to 
poly4.c and are not visible outside that file (since they were declared as static global variables).

8.2 Include Files as Interfaces
We have encountered the main principles of encapsulation in the C language: data hiding using 
file scope and function scope. The principles of modular program design require us to encapsulate 
a component of the program according to functions and variables that are visible and those that 
are hidden, thus minimizing interdependencies (and errors) across the program design.

An effective way to do this involves using include files to define a module’s externally visible 
interface. The process works as follows:

• The functions and global variables that should be visible outside of the file in which 
they are declared represent this module’s interface. The interface is defined by several 
extern statements placed in an include file.

• This include file is included (with the #include directive) wherever another file 
needs to reference the given module’s interface.

• The module in which the functions and variables are declared also includes the include 
file. This isn’t strictly necessary but is a very good defense against mismatches in the 
source code and the include file (the compiler will flag the differences).

• Functions and global variables that are private to a module are not put in the include 
file and are declared static.

For example, let us split our example program into three files now:

• The main.c file (same as before)
• The poly4.c file (same as before)
• A poly4.h file (all the extern statements go here)

Here is the new poly4.h file:

// Defined in poly4.c
extern int poly4calls;
extern void poly4coeff(double c1, double c2, double c3, double c4);
extern double poly4(double x);

The main.c file is now smaller:

#include <stdio.h>
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#include “poly4.h”

void main(void) {
int i;

poly4coeff(4.0, -2.0, 1.0, 5.0);
for (i=-5; i<=5; i++) {

printf(“(%d,%g)\n”, i, poly4(i));
}
printf(“We called poly4 %d times.\n”, poly4calls);

}

We have gained several benefits from this approach:

• Any changes to the interface of poly4.c are reflected in a single file, poly4.h, 
rather than having to modify all the other files that might have used it.

• We can make changes to the implementation of poly4.c without changing the inter-
face. For example, we may want to implement the poly4 function in assembly lan-
guage for maximum speed. This does not affect the interface whatsoever.

This approach to modularity and encapsulation is clearly less robust than that of classes, public/
private distinctions, and inheritance, all available in Java and C++. As programs become larger 
and larger, the modularity mechanisms of C become unsatisfactory. Both C++ and Java are better 
languages for very large programs due to their better support for modularity and encapsulation.

8.3 Object Files and Linking
A complete program is created by linking together one or more object files. A single source file 
generates a corresponding object file, in which the ‘.c’ extension is replaced with ‘.obj’ (or 
‘.o’ on Unix-type systems). For example, compiling ‘hello.c’ (successfully) generates the 
object file ‘hello.obj’.

A separate program known as the linker pulls together one or more object files and stitches them 
all together into a single executable file. The linker’s role is to resolve external references. A 
function (or variable) declared extern in one source file must eventually be found in an object 
file. If not, the linker issues an “unresolved reference” error, meaning you probably forgot to write 
certain functions. This error can also arise if functions or global variables are declared static 
by mistake, in which case the linker doesn’t “see” them (i.e., the have file scope, not program 
scope).

For example, the polynomial evaluation example program shown in Section 8.2 comprises two 
source files, main.c and poly4.c, which are compiled to create the object files main.obj 
and poly4.obj. The linker then examines the main.obj file and sees that it expects to use a 
function named poly4. This function, however, is not defined within the main.obj file, thus is 
an external reference. When the linker examines poly4.obj, it finds the definition of poly4, 
which resolves this external reference. If all external references are resolved, linking is complete 
and an executable file is generated.

J
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A set of object files that may be of use in a wide variety of programs are often packaged into a 
library. A library is simply a collection of pre-compiled object files. For example, suppose you 
created several source files to support the evaluation of many types of polynomials. After compil-
ing all of these source files to create object files, a librarian program can package these object 
files into a single library file, perhaps named poly.lib. This file can then be distributed to any-
one that wishes to use your functions as part of a larger program.

C compilers include system libraries that can be used in the linking process for your program. One 
such library, the standard C library (briefly introduced in Section 9.0), contains the object code 
for functions such as printf. Linking your program with the standard C library “pulls in” the 
printf function from somewhere within the library and adds it to your executable program.

The linking process is similar to the importing of classes in a Java program. Whereas the latter 
occurs at run-time in a Java program, linking is a static process that must occur before you can run 
your program. A variant of linking, known as dynamic linking, is similar to the Java approach in 
that the required object files (packaged into dynamic link libraries, or DLL’s in Windows envi-
ronments) are not linked until the program runs. Creating programs that take advantage of 
dynamic linking is an esoteric process, and it doesn’t help that this process is very different on 
Windows and Unix-type systems.

8.4 The Details of the Compilation Process
For single-file programs, the compilation process is conveniently hidden by a driver program that 
orchestrates all of the compilation steps: preprocessing, compiling, assembly, and linking. As pro-
grams become larger and are split across multiple files and libraries, the details of these steps 
become more important. For example, the BCC32 program is actually a driver program that 
invokes the following sub-programs:

• The C preprocessor (built-in to BCC32 or runable externally as CPP32.EXE)
• The C compiler (built-in to BCC32)
• The assembler (built-in to BCC32, use ‘-S’ option to view assembly source)
• The linker (the ILINK32.EXE program)

The preprocessor (described briefly in Section 1.4) removes comments, handles #include 
directives, etc. and leaves another file as input to the compiler.

The compiler takes the output of the preprocessor and generates low-level assembly language 
code in yet another text file.

The assembler takes this text file and generates object code (see Section 8.3) which is simply sev-
eral numbers that represent instructions for the computer’s processor.

Finally, the linker brings together several object code files, either stand-alone or in libraries, and 
creates the final executable.

All of the above is hidden from the user in most cases. For example, if only the standard C library 
is used, the linker automatically searches it and there is no need to explicitly include it in the link-

J
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ing process. If additional libraries need to be used, however, they must be specified to the driver 
program. For example, if you need to make use of a library called serial.lib, you can indi-
cate this to the BCC32 program as follows:

bcc32 main.c serial.lib

The BCC32 program automatically recognizes serial.lib as a library (it doesn’t try to com-
pile it!) and passes it to the linker.

There can also be a mixture of source files, object files, and libraries passed to the driver program. 
For example:

bcc32 main.c file1.obj serial.lib

The driver program compiles main.c to create main.obj, then passes the object file 
file1.obj and serial.lib to the linker in order to create the final executable.

If you wish to create an object file from source code but not link, the ‘-c’ option can be used:

bcc32 -c main.c

This will generate main.obj (i.e., preprocess, compile, assemble) but will not attempt to per-
form the link step.

9.0 The Standard C Library
The specification for the C programming language not only describes the language components 
but also describes a standard set of functions that must be made available by all C compiler suites. 
These functions comprise the standard C library.

As the name implies, the standard C library is a set of pre-compiled object files that can be linked 
in with a user’s program. On Unix systems, this library is called ‘libc.a’ and is traditionally 
supplied with the operating system (although installing a separate compiler, such as GCC, will 
also install a separate C library for use with that compiler). The BCC32 compiler under Windows 
comes with the file ‘CW32.LIB’, which is the standard C library for Win32 applications.

In this section we briefly introduce the functions that comprise the C library in aggregate. A full 
explanation of all functions and their calling protocols is left for a reference source, such as the 
on-line help available with your compiler or a standard C reference text.

9.1 Assertion Checking
The include file <assert.h> defines the assert() function which expects its argument to be 
non-zero. If the argument is 0, the program aborts immediately. Assertions are useful for ensuring 
that things the programmer assumes to be true are indeed true at run-time. See Section 10.8 for an 
example.
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9.2 Character Classification
The include file <ctype.h> defines several functions that test properties of ASCII characters. 
For example, the isprint() function determines whether or not its argument is a printable 
character (i.e., not a control character like a newline or a backspace), and the isdigit() func-
tion determines whether or not its argument is a decimal digit.

9.3 Error Reporting
The externally defined integer variable errno is often set to meaningful values by components 
of the standard C library to report errors. This variable is defined by including the file 
<errno.h>. In addition, this file declares several constants that describe the type of error. For 
example, ENOFILE is defined to be the constant that errno is set to when the fopen function 
is called to open a non-existent file. The function perror can be used to print a textual descrip-
tion of the error code.

Also see Section 10.9 for an example of error reporting using perror.

9.4 Buffer Manipulation
This library component has already been introduced in Section 7.3. The functions in this module 
are declared by including the <string.h> include file. The buffer manipulation functions sup-
port operations such as filling memory, copying memory blocks, and looking for bytes in a mem-
ory block.

9.5 Non-Local Jumps
The <setjmp.h> include file defines two functions, setjmp() and longjmp(), which can 
effect “non-local gotos”. These functions can cause program flow to jump back and forth between 
any two points in a program, not necessarily in the same function or even the same source file. 
These functions are most often used to effect handling of run-time errors across an entire program 
or to implement coroutines, a simulation of multi-threaded operation.

9.6 Event Signalling
The <signal.h> include file defines functions and constants to support the handling of events. 
For example, when a user presses the Ctrl+C key at the console, programs generally terminate. 
The reason they do so is because they receive a “signal” known as SIGINT. The default action 
for SIGINT is to terminate the program. Using the signal function, however, the programmer 
may indicate an alternative course of action to follow in response to this event.

9.7 Variable-Length Argument Lists
Have you wondered by now how come the printf function can take a variable number of 
parameters? This is because C actually supports functions which can be passed more parameters 
than some minimum number. The functions defined in the <stdarg.h> include file allow the 
programmer to define variable-length argument lists and write functions like printf that can 
make good use of this concept.
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9.8 Miscellaneous Functions
The <stdlib.h> include file declares several functions that are commonly used:

• atof, atoi, atol: interpret strings as integers
• strtod, strtof, strtold: interpret strings as real numbers
• strtol, strtoul: interpret strings as integers (more robust than atoi or atol)
• rand, srand: generate pseudo-random numbers
• abort: immediately terminate the program
• atexit: define code to execute before a program terminates
• exit: terminate the program with proper cleanup and a return value
• getenv: return values from the external environment (like PATH)
• system: run external programs
• bsearch, qsort: efficient sorting and searching of arrays
• abs, labs: integer absolute values
• div: integer division and remainder in a single operation

9.9 String Handling
The <string.h> include file declares all of the functions that expect to operate on null-termi-
nated character strings. Some basic string operations were already discussed in Section 6.4.2. The 
more common string functions are:

• strcpy, strncpy: copy one string to another
• strcat, strncat: append one string to another
• strlen: return the length of a string
• strchr: find a character within a string
• strstr: find a substring within a string
• strcmp, strncmp: compare two strings for equality
• strtok: split a string into tokens separated by delimiters

9.10 Time Functions
The <time.h> include file defines various components to support time and date functions. The 
clock function can be used to time how long a subroutine takes to execute, for example. The 
time function returns the current date and time as a variable of type time_t, while the ctime 
function takes the return value of the time function and formats it as a character string.

Consult reference documentation for additional functions and definitions in this module.

9.11 Floating-Point Math
Several mathematical functions, such as sin, cos, and atan are available to C programs. These 
functions are declared by including the <math.h> include file.

9.12 Standard I/O
This library component has already been introduced in Section 7.1. The functions in this module 
are declared by including the <stdio.h> include file. The standard I/O functions support buff-
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ered input and output to file streams, which include both regular disk files as well as the user’s 
console and keyboard.

10.0 Tips, Tricks, and Caveats

10.1 Infinite Loops
A loop introduced with while or for (or other looping statement) may sometimes be desirable 
when the exit condition is more clearly written in the middle of the loop. For example, this sub-
routine only returns when the correct password is entered.

#include <string.h>
extern const char *getString(void);
static const char *password=”Swordfish”;

void checkPassword(void) {
while (1) {

if (strcmp(getString(), password) == 0) return;
}

}

Note the expression ‘1’ is used as the test expression of the while loop. This “expression” always 
evaluates to true thus the loop never terminates, unless a break, return, or goto statement is 
encountered.

An infinite loop can also be introduced with the for statement:

for (;;)

10.2 Unallocated Storage
This program will crash:

#include <stdio.h>

void main(void) {
int *intPtr;
printf(“Type an integer: “);
fscanf(stdin, “%d”, intPtr);
printf(“You typed: %d\n”, *intPtr);

}

It seems to be consistent: the fscanf function expects a pointer to an integer in which to store 
the conversion result, so we provide it with intPtr, which is a pointer to an integer.

The problem is that we have not identified any space for this integer in memory. The variable 
intPtr points to the address of some integer, but that integer has not been declared. Put another 
way, the intPtr variable is not being initialized and is pointing to some random place in mem-
ory. The fscanf function will then store the integer it reads to this random place, causing a 
crash.
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Put yet another way, space is created in memory to store data only by declaring non-pointer vari-
ables or dynamically (using malloc; see Section 7.2). Declaring a pointer variable does not 
create space to store data. This mistake is very commonly made by new C programmers.

Using unallocated storage is even more common when using strings. The distinction between an 
actual array of characters, i.e., the string, and the pointer to these characters, which is how we 
refer to the string in function calls, is frequently confused. Here’s another crash-worthy program:

#include <string.h>

void main(void) {
char *myString;
strcpy(myString, “Hello!”);

}

Once again, we are copying characters from one “string” to another, but there is no memory space 
set aside for myString. This is a variable that points to...nothing. The correct implementation is 
either:

#include <string.h>

void main(void) {
char myString[100];
strcpy(myString, “Hello!”);

}

or:

#include <string.h>
#include <stdlib.h>

void main(void) {
char *myString = (char *)malloc(100);
strcpy(myString, “Hello!”);

}

10.3 The Null Statement
A single semicolon is the simplest C statement; it simply means “do nothing”. This can be useful 
as a placeholder for future code:

if (error) {
; // Write this code later

}

Also, the semicolon can be used as a null body of a loop statement when all the useful work is 
actually done in the loop statement itself:

while (*(volatile char *)0x1000 == 0) /* NULL */ ;
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This statement waits for the contents of memory location 0x1000 to be non-zero. There is nothing 
to be done in the body of the loop while waiting. The comment ‘NULL’ is there as a form of doc-
umentation, reminding us that we intended there to be an empty loop body.

10.4 Extraneous Semicolons
A poorly-placed semicolon can lead to program bugs that are very tough to find. Consider:

for (i=0; i < 10; i++);
printf(“%d\n”, i);

This looks right...but notice that extra semicolon at the end of the for statement. This creates a 
loop with a null body (see Section 10.3 above). The printf statement will only execute once, 
printing the value 10. This program fragment is perfectly legal; the compiler won’t raise any 
errors.

10.5 strcmp is Backwards
Remember that in comparing two strings, the strcmp function returns 0 if they are equal. Thus, the 
following is correct:

if (strcmp(str1, str2) == 0) { // They’re equal

Some programmers find this so annoying that they define the macro:

#define streq(s1,s2) (strcmp((s1),(s2)) == 0)

and then write the more intuitive:

if (streq(s1,s2)) { // They’re equal

10.6 Unterminated Comments
Forgetting to include the final ‘*/’ of a multi-line comment can lead to a compiler error many 
lines away from the comment, and this can be tough to find. For example:

/* Here starts a comment...but we didn’t finish it!

void subroutine(void) {
...
dosomething(); /* This comment’s terminator finishes the

comment started at line 1 */
}

The C compiler will see only one line: the last. This will cause the strange error “Unexpected }”. 
Note that the BCC32 compiler has the command-line option ‘-C’ which enables “nested com-
ments”. This option will generate a much more useful error message in response to this situation.

10.7 Equality and Assignment
One of the greatest criticisms levelled at C is the use of ‘==’ and ‘=’ to mean totally different 
things. (Surprisingly, this criticism was not considered sufficient reason to change the situation in 
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Java.) Confusing the equality and assignment operators can be a source of very frustrating bugs. 
Consider the example:

while (error = 0) { // OOPS!
error = tryitagain();

}

The problem is that the while-expression should have been written ‘error == 0’. As written, 
the while-expression will assign 0 to error and always skip the body of the while loop.

The BCC32 warning message “Possibly incorrect assignment” (enabled by the ‘-wpia’ com-
mand-line flag) alerts you to these types of errors.

10.8 Assertion Checking
Use the assert function liberally (see Section 9.1 and the reference documentation for the 
assert function). This function takes a single parameter, which it expects to be non-zero (i.e., 
true). If the parameter is 0, the program exits immediately. Assertion checking is one way of pro-
gramming defensively. Rather than assuming that some condition is true by necessity, the asser-
tion check verifies this assumption prior to proceeding with the program.

For example, consider a function intended to count the number of lines in a text file. This function 
assumes that it is passed a file pointer, as returned by a call to fopen. But what if this is not the 
case? Rather than proceed blindly with the code, we first verify our assumption.

#include <stdio.h>
#include <assert.h>

int countLines(FILE *file) {
int i;
char line[80];

assert(file != 0);
for (i=0; fgets(line, 80, file); i++) /* NULL */ ;
return i;

}

If it so happens that this function is called with a null pointer, the program will stop here rather 
than trying to proceed. The closer an error is found to its source, the easier it will be to find.

10.9 Error Checking
Programs that actively try to intercept and meaningfully describe run-time errors take longer to 
develop but often pay for themselves many times over in saved debugging time. Consider, for 
example, a program that counts the number of lines in a file. The name of the file is the first 
parameter of the program. The naive approach to this is as follows:

#include <stdio.h>

void main(int argc, char *argv[]) {
FILE *file = fopen(argv[1], “rt”);
int lines = 0;
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char line[80];

while (fgets(line, 80, file)) line++;
printf(“%d lines\n”, line);

}

There are many things that could go wrong:

• The program was not called with an argument
• The argument to the program does not represent an existing file name
• An error occurred while reading the file
• The printf statement was unable to display the results

Any one of the above conditions will lead to incorrect behavior, possibly a crash, with little or no 
description of what went wrong. A more robust version of the above might be as follows:

#include <stdio.h>
#include <errno.h>

int main(int argc, char *argv[]) {
FILE *file;
int lines = 0;
char line[80];

if (argc < 2) {
fprintf(stderr, “No argument specified.\n”);
return 1;

} else if (argc > 2) {
fprintf(stderr, “Too many arguments specified.\n”);
return 1;

}

file = fopen(argv[1], “rt”);
if (file == 0) {

perror(“fopen”);
fprintf(stderr, “Unable to open ‘%s’\n”, argv[1]);
return 1;

}

while (fgets(line, 80, file)) lines++;

// fgets could have failed either via end-of-file or
// reading error.
if (! feof(file)) {

fprintf(stderr, “Error while reading input file\n”);
return 1;

}
printf(“%d lines\n”, lines);

return 0;
}
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A much longer program...but a much better program too. Note that we checked just about all the 
things that could go wrong, except for calls to fprintf and final call to printf at the end. 
These functions are also capable of returning error codes in case of failure, but what would we do 
in this case? Without an alternative means of communicating with the user, there is no point in 
testing for these errors.

Using subroutines to encapsulate both functionality and error checking is a good step towards 
managing the complexity of robust programs and also making them more readable. For example, 
consider the function:

FILE *OpenFile(const char *name, const char *mode)

This function could act as a wrapper around fopen, reporting any errors that arise. The main 
program could then simply call OpenFile and not worry about the error reporting:

if (OpenFile(argv[1], “rt”) == 0) return 1;

10.10 Programming Style
The question of style is perhaps difficult to define precisely. Subjectively, good style is what 
allows a C program to be easily read, written, and understood. This is not simply an aesthetic mat-
ter. It is possible to write some terrible code in C (and most any other language) that, unfortu-
nately, works exactly as intended. When it is time for others to read this code (as part of a code 
review, perhaps) or for others to modify it, the code becomes a burden that carries with it a real 
penalty in productivity.

Consider, for example, the program shown below in Figure 1 that prints the value of the constant 
 to 3142 digits (written by Roemer B. Lievaart). While interesting, imagine if you were given 

the task of modifying this program so that it printed more digits. Where would you begin? The 
program, certainly intentionally designed to be interesting rather than useful, illustrates the idea 
that the source code is meant for both humans and computers.

There are some general guidelines that can lead to the development of good style:

• Be consistent. Use a style that matches existing code (if you are modifying or adding 
on to a program). It is difficult to read a program that uses different styles, as the style 
changes impair comprehension. Some of the components that should be consistent are:

- the amount of indentation from one nesting level to the next
- the style of curly brackets (on the same line? on new line?)
- the naming convention of variables, functions, constants, etc. (see below)

• Use meaningful names for variables, functions, and constants. Avoid generic names 
like “i” for variables unless they are very short-lived and unimportant. For example, 
see if you can figure out what this subroutine does:

e
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double S(double *level, int Q) {
int retval;
double shrimp_on_a_plate = 0;
for (retval=0; retval < Q; retval++) {

shrimp_on_a_plate += level[retval]/Q;
}
return shrimp_on_a_plate;

}

Now consider the version with more meaningful variable names:

double mean(double *array, int numEntries) {
int count;

                                                                        char
                                                            _3141592654[3141
          ],__3141[3141];_314159[31415],_3141[31415];main(){register char*
      _3_141,*_3_1415, *_3__1415; register int _314,_31415,__31415,*_31,
    _3_14159,__3_1415;*_3141592654=__31415=2,_3141592654[0][_3141592654
   -1]=1[__3141]=5;__3_1415=1;do{_3_14159=_314=0,__31415++;for( _31415
  =0;_31415<(3,14-4)*__31415;_31415++)_31415[_3141]=_314159[_31415]= -
1;_3141[*_314159=_3_14159]=_314;_3_141=_3141592654+__3_1415;_3_1415=
__3_1415    +__3141;for                 (_31415 = 3141-
           __3_1415  ;                  _31415;_31415--
           ,_3_141 ++,                  _3_1415++){_314
           +=_314<<2 ;                  _314<<=1;_314+=
          *_3_1415;_31                   =_314159+_314;
          if(!(*_31+1)                   )* _31 =_314 /
          __31415,_314                   [_3141]=_314 %
          __31415 ;* (                   _3__1415=_3_141
         )+= *_3_1415                     = *_31;while(*
         _3__1415 >=                      31415/3141 ) *
         _3__1415+= -                     10,(*--_3__1415
        )++;_314=_314                     [_3141]; if ( !
        _3_14159 && *                     _3_1415)_3_14159
        =1,__3_1415 =                     3141-_31415;}if(
        _314+(__31415                      >>1)>=__31415 )
        while ( ++ *                       _3_141==3141/314
       )*_3_141--=0                        ;}while(_3_14159
       ) ; { char *                        __3_14= “3.1415”;
       write((3,1),                        (--*__3_14,__3_14
       ),(_3_14159                          ++,++_3_14159))+
      3.1415926; }                          for ( _31415 = 1;
     _31415<3141-                           1;_31415++)write(
    31415% 314-(                            3,14),_3141592654[
  _31415    ] +                            “0123456789”,”314”
  [ 3]+1)-_314;                            puts((*_3141592654=0
,_3141592654))                              ;_314= *”3.141592”;}

Figure 1: C program to print 3142 digits of the constant . This program does not exhibit good 
programming style.

e
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double avg = 0;
for (count=0; count < numEntries; count++) {

avg += array[count]/numEntries;
}
return avg;

}

To the compiler, they are one and the same program. To humans, the second program is 
much more readable. The use of meaningful names for program components leads to self-
documenting code, meaning that few comments need to be written to explain program 

operation.1

• Develop a naming style that readily identifies functions, local variables, global vari-
ables, constants, etc. Here are some suggestions.

Use ALL_CAPITALS for constants defined using #define directives.

Use either MixedCaps notation or underscore_separator notation through-
out your program.

Distinguish between function parameters, local variables, and global variables by 
using single-letter prefixes. For example:

void SomeFunction(int pNumEntries, double *pArray) {
int lCount;

for (lCount = 0; lCount < pNumEntries; lCount++) {
pArray[lCount] *= gCurrentScalingFactor;

}
}

• Avoid global variables if possible, especially as a means of communication between 
program modules.

• As a generalization of the above, develop code that is highly modular and well encap-
sulated. Group logically-related functions and variables together into a single source 
file. In that file, only “expose” (i.e., declare non-static) the functions and global vari-
ables that truly need to be seen by other modules.

• Do not use “magic numbers”, i.e., constants that appear arbitrary. Use either 
#define statements or const-qualified variables to give these constants meaning-
ful names. For example, imagine running across the following line in a program:

char bytes[523776];

The above would certainly challenge interpretation. More meaningful is:

1. As a matter of interest, the variable name shrimp_on_a_plate was indeed encountered in the source 
code of a commercial application.
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const int BytesPerSector = 512;
const int SectorsPerTrack = 1023;
char bytes[BytesPerSector * SectorsPerTrack];

• Comment well. Note, this did not say “comment a lot”. There are places where com-
ments are appropriate, but too many comments can obscure the code. Well written, 
self-documenting code (see above) should not need too many comments. Good com-
ments are ones that give the reader hints about the big picture, how a block of code 
does its job, issues that modifiers of the code must keep in mind, etc.

• Keep all comments up-to-date. It has been said that the only thing worse than inade-
quate documentation is documentation that no longer agrees with the code.

• Avoid the temptation to write highly-compact, (supposedly) highly-optimized code. It 
is much more important to write clear and legible code first, then to optimize the code 
that truly makes a difference to execution time.

• Keep all subroutines short, preferably to one screen height so you can see all of the 
subroutine’s code in your editor. Excessively long subroutines are hard to understand. 
Break out (i.e., refactor) logically-grouped chunks of your code into subroutines.

• Avoid excessive nesting levels. Going beyond the fourth or fifth indentation level indi-
cates that the code is too complicated. Use additional subroutines to clarify the code.

11.0 Differences between Java and C
The C language proper can almost be considered a subset of Java. The differences between them 
can be very briefly summarized:

• C has no classes. All of the Java language features dealing with classes (e.g., public, 
private, protected, interface, extends, etc.) are not present. C, however, does 
have structures, which are essentially classes with public variables and no methods.

• The starting point of a C program is the main function. In Java, it is the main method of 
a class.

• C has pointers, Java does not. Java has references, C does not. In practice, references and 
pointers are exactly the same thing, but Java hides some of the complexity.

• Java automatically destroys objects once they are no longer needed (known as garbage 
collection). C does not. In C, you must explicitly destroy memory allocated for a dynamic 
object.

• In Java, you use the import statement to indicate you want to use library components. In 
C, you use the #include directive.

• C has the comma operator, Java does not.
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• Java has the >>> operator, C does not.

• C has the unsigned built-in data type, Java does not.

• Java strings are objects, C strings are arrays of the char type and end with a 0 byte.

• C has a preprocessor, Java does not.

• Java break and continue statements can use label names, C does not allow this. How-
ever, C has the goto statement which is essentially equivalent. Java has no goto statement.


